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: Abstract .

The primary objective of this research is to extend current capabilities of Large Eddy

Simulations (LES) and Direct Numerical Simulations (DNS) for the computational

analyses of high speed reacting flows. Our efforts in the first two years of this research

have been concentrated on a priori investigations of single-point Probability Density

Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In

the efforts initiated in the third year, our primary focus has been on performing actual

LES by means of PDF methods. The approach is based on assumed PDF methods

and we have performed extensive analysis of turbulent reacting flows by means of LES.

This includes simulations of both three-dimensional (3D) isotropic compressible flows

and two-dimensional reacting planar mixing layers. In addition to these LES analyses,

some work is in progress to assess the extent of validity of our assumed PDF methods.

This assessment is done by making detailed companions with recent laboratory data

in predicting the rate of reactant conversion in parallel reacting shear flows.

This report provides a summary of our achievements for the first six months of

the third year of this program. This research has been supported by NASA Langley

Research Center under Grant NAG-1-1122. Dr. J. Philip Drummond, Theoretical Flow

Physics Branch (TFPB), Mail Stop 156, Tel: 804-864-2298 is the Technical Monitor of
this Grant
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1 Recent Progress

In the first two years of this research program, we have been speculating the feasibility of the

approach based on probability density function (PDF) methods as a means of accounting for

the effects of subgrid scalar fluctuations in large eddy simulations (LES) of turbulent reacting

flows. Within this period, we have devoted substantial effort on extending the state-of-the-

art on PDF modeling, and on making use of recent developments for the purpose of our

investigation. Fortunately, we have been able to make noteworthy progress in understanding

the advantages and drawbacks of all of the recently available PDF methods. Therefore, in

this third year of our activities, we have initiated a strong program in making use of PDF

methods for the purpose of LES. In doing so, based on our experience in the first two years,

we have initiated a step-by-step procedure which we shall describe below. The advantage of

this procedure is the fact that the results of our investigation are also helpful in approaches

based on conventional Reynolds averaging methods.

It is well-know that there are two ways by which the PDF methods can be invoked for

modeling of scalar fluctuations in a statistical description of turbulent reacting flows [1, 2]:

(1) Assumed PDF, (2) PDF obtained by a modeled transport equation. By fluctuations

we mean those in either typical Reynolds averaging or within the subgrid in LES. Each of

these two PDF methods have certain advantages and drawbacks, as indicated in our previous

yearly reports and as also indicated in a number of previous publications, e.g. [3, 4, 5].

A noteworthy progress in PDF methods is the recent development of the Amplitude Mapping

Closure (AMC) by Kraichnan and co-workers [6, 7]. In a number of standard test cases, it

has been demonstrated that this closure is somewhat more superior in comparisons with

previous PDF methods based on the so called Coalescence/Dispersion (C/D) models [8].

Based on this development, at the initial phase of this research our intention was to make

use of AMC for the purpose of subgrid closures. For that, we initiated a research program

for the purpose of better understanding the properties of this closure. Based on our work



to date, the resultsof which are reported in [9, 10], it is shownthat the approachprovides

someadvantagesover previousmodels for some"simple" cases.However,it doesalso have

certain drawbackswhich limits its usefor "practical" applications. In our recentpaper [10]

(included as Appendix I), a lengthy discussionis presentedof all the properties of these

methods. Here,we shall summarizesomeof the difficulties associatedwith the useof AMC

for PDF basedLES:

1. The useof the approachis practical for closureonly at the single-point level.

2. In its present form, the model cannot take the effectsof mixing on migration of scalar

bounds into account.

3. The computational implementation of the model for multi-scalar mixing and reaction is

virtually impossible.

4. For the caseswhich the model hasbeen validated, other simpler PDF methods; partic-

ularly those belonging to the Pearson Family (PF) [11] or Johnson Edgeworth Translation

(JET) [12, 13] of distribution have been satisfactory.

Considering points (1) and (2), it is safe to conclude that the AMC shares the same limita-

tions as those in assumed PDF methods and in C/D closures. Point (3) advocates the use

of other PDF methods until developments of more reliable numerical methods. Based on

these three points, and also considering point (4) we decided to "discontinue" further basic

research on assessing pro's and con's of PDF methods, in favor of extending LES technology

by means of PDF methods. This is deemed acceptable, at least at the present stage, since:

w

(i) Most current PDF methods can be only incorporated at the single-point level. Therefore,

closure models for the second order moments (e.g. variances and covariance) have to be

provided by other means.

(ii) The flexibilities offered by some of the assumed probability distributions, e.g. members

of PF or JET is very pleasing for accounting the effects of species fluctuations in a stochastic
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sense.

(iii) While in Reynolds averaging of reacting flow, the modeling of the PDF is very crucial

[14], we speculate that in LES of such flows it is more crucial to have the second order

moments of the scalar field predicted correctly.

Based on these points, we have decided to perform extensive LES analyses of homogeneous-

isotropic and spatially developing reacting mixing layers. The results of our efforts to-date

are described in detail in Appendix II. The summary of our findings is:

L

7

(a) We feel that the approach based on a hybrid second-order closure and assumed PDF

methods provides the most promising and practical means of performing LES of reacting

flows, at least presently. The appropriate form of the closure that can be used is based on a

k - A - _ model. Here, k = kinetic energy of velocity fluctuations within the subgrid, /k =

the width of the filter, and _ = the "covariance" vector.

(b) It is impossible to make use of zero-order models (equivalent of Prandtl's mixing length

hypothesis) in LES. The implementation of this model results in wrong predictions.

_Z

(c) The second order methodology is significantly different from that used in conventional

Reynolds averaging procedures. The primary difference is due to modeling of convective

transport and also the "diminished" degree of freedom because of the lack of a transport

equation for A.

(d) After significant analyses (see Appendix II), we now have a reasonable k equation. This

equation works well if a combination of both the "strain rate tensor" and the "rotation

tensor" are used in modeling the turbulent viscosity.

(e) In simple reacting systems, assumed PDF's of PF and JET [10] provide a reasonable

means of accounting for the scalar fluctuations within the subgrid. For example, in the

chemistry of A + B _ Product, the Logit-Normal density and the Beta density of first

kind are reasonable for the chemistry under equilibrium conditions. Under non-equilibrium
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conditions, the use of Dirichlet distribution can be justified.

(f) The model described above can be used effectively if k and g are predicted accurately.

The usual practice is to use gradient diffusion modeling for the effects of convective transport

in the g equation. While this model has been somewhat satisfactory in Reynolds averaging

procedures, it does not work in LES (see Appendix II). In fact, even in a simple non-

reacting flow, the scalar g (not in the vector form) cannot be precited well. This is expected

considering the different form of k equation which had to be used. Nevertheless, if this

parameter is modeled accurately the LES procedure can be implemented very effectively.

We do not yet know how to modify the g equation in a form appropriate for LES. This issue

is currently being investigated.

The next step in our work in this direction is to replace the assumed PDF method with the

approach based on a transport equation for the PDF. For that we plan to make use of C/D

models for modeling of the molecular mixing term. Our purpose for doing so is due to two

factors: (1) C/D closure can be incorporated into the numerical procedure rather easily, and

(2) The problem associated with the lack of bounda, ry migration is less severe in C/D in

comparison to AMC.

The summary of all our achievements are highlighted in the appendices. These appendices

are self explanatory. Therefore, there is no need for further elaboration here.

w
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2 Recent Publications

Within the first half of our activities in the third year, we have produced the following

publications: A journal article to appear Comb. Sci. and Tech. [10] (Appendix I), a paper

to be presented at the LES conference at the ASME meeting in June 1993 (Appendix II),

and an article to be submitted for publication shortly (Appendix III).
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3 Appendix I

This appendix provides a summary of our work on assumed PDF methods. In addition to

explaining many important mathematical characteristics of all the available PDF methods,

this paper also provides a comparative assessment of these closure for practical applications.

The major point of the report, as relevant to our LES analyses, is the comparison of the

properties of PF and JET generated PDF's with those of AMC.

The work reported here makes a logical extension of our previous work reported in [9].
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Abstract--A family of Probability Density Functions (PDF's) generated by Johnson-Edgeworth Translation
(JET) is used for statistical modeling of the mixing of an initially binary scalar in isotropic turbulence.

The frequencies obtained by this translation are shown to satisfy some of the characteristics of the PDF's

generated by the Amplitude Mapping Closure (AMC) (Kraichnan, 1989; Chen et al., 1989). In fact, the

solution obtained by one of the members of this family is shown to be identical to that developed by the AMC

(Pope, 1991). Due to this similarity and due to the demonstrated capabilities of the AMC, a justification is

provided for the use of other members of JET frequencies for the modeling of the binary mixing problem.
This similarity also furnishes the reasoning for the applicability of the Pearson Family (PF) of frequencies

for modeling of the same phenomena. The mathematical requirements associated with the applications of
JET in the modeling of the binary mixing problem are provided, and all the results ate compared with

data generated by Direct Numerical Simulations (DNS). These comparisons indicate that the Logit-Normal

frequency portrays some subtle features of the mixing problem better than the other closures. However, none

of the models considered (JET, AMC, and PF) are capable of predicting the evolution of the conditional

expected dissipation and/or the conditional expected diffusion of the scalar field in accordance with DNS. It

is demonstrated that this is due to the incapability of the models to account for the variations of the scalar

bounds as the mixing proceeds. A remedy is suggested for overcoming this problem which can be useful in

probability modeling of turbulent mixing, especially when accompanied by chemical reactions. While in the

context of a single-point description the evolution of the scalar bounds cannot be predicted, the qualitative

analytical-computational results portray a physically plausible behavior.

1 INTRODUCTION

The problem of binary mixing in turbulent flows has been the subject of widespread
investigations over the past two decades (Dopazo, 1973; Pope, 1979; Pope, 1985; Pope,
1990; Givi, 1989; Kollmann, 1990). This problem has been particularly useful in assessing
the extent of validity of the closures developed within this period for modeling of turbulent

mixing by Probability Density Function (PDF) methods (Dopazo, 1973; Pope, 1976; Pope,
1979; Janicka et al., 1979; Pope, 1982; Kosaly and Givi, 1987; Norris and Pope, 1991).
Usually the problem is considered in the setting of a spatially homogeneous turbulent flow
in which the temporal evolution of the PDF is considered. In this setting, development
of a closure which can accurately predict the evolution of the PDF has been the main
objective of these investigations (for recent reviews see Pope (1990); Kollmann (1990);
Givi (1989)).

Computational experiments based on Direct Numerical Simulations (DNS) have proven
very useful in evaluating the performance of new closures (Givi, 1989; Pope, 1990). The
binary mixing problem is well-suited for DNS investigation, and current computational

capabilities allow consideration of flows at sufficiently large Reynolds numbers in which
the behavior of the models can be assessed (Eswaran and Pope, 1988; Givi and McMurtry,

1988; McMurtry and Givi, 1989; Madnia and Givi, 1992). The results of all the previous
work on DNS of the binary mixing problem portray a clear picture of the PDF evolution,
at least at the single-point level. A successful closure is one which can predict all the
stages of mixing, as depicted by DNS, from an initially binary state (total segregated) to
a final mixed condition.
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Amongst the models developed in the literature, the recent Amplitude Mapping Closure
(AMC) (Kraichnan, 1989; Chen et al., 1989; Pope, 1991) has proven effective in producing
a physically correct PDF evolution. In the application of this model to the problem of
binary mixing it has been demonstrated that the closure is capable of approximating a
reasonably correct evolution at all stages of mixing (Pope, 1991). Namely, the evolution
from an initial double delta PDF to an asymptotic Gaussian distribution. This is a trend
which has been observed in DNS (Eswaran and Pope, 1988; Givi and McMurtry, 1988;
McMurtry and Givi, 1989; Madnia and Givi, 1992) and also corroborated by experimental
investigations (Miyawaki et al., 1974). However, it is shown by Gao (1991); O'Brien and
Jiang (1991) that the PDF adopts an asymptotic Gaussian-like distribution only near the
mean scalar value, and the conditional expected dissipation does not correspond to that
of a Gaussian field everywhere within the composition domain.

Our first objective in this work is to present another means by which the AMC can
be viewed. It is demonstrated that in the binary mixing problem, this closure can be
considered as a member of the family of frequencies generated by the method of Johnson-
Edgeworth Translation (JET). In fact, it is shown that the result produced by the AMC is
identical to that generated by one of the members of this translation. With this observation,
a justification for employing other simpler "assumed" frequencies is provided. Our second
objective is to make a detailed examination of the conditional expected dissipation and
the conditional expected diffusion of the scalar variable as predicted by the closures.
This examination provides an effective means of demonstrating the deficiencies of these
models in reproducing the correct physical behavior as depicted by DNS results. With
the development of analytical relations for some of these closures, a remedy is suggested
for overcoming the model deficiencies.

1.I Outline

In the next section, the problem of binary mixing and its solution via the AMC is briefly
reviewed. In Section 3, the Johnson-Edgeworth Translation is introduced with a highlight
on the mathematical constraints associated with its application for the modeling of the
mixing problem. Due to the previously established similarity of the JET frequencies
with those based on the Pearson Family (PF), the Beta density of the first kind is
also presented in this section. The PDF's generated by these three models (AMC,
JET and PF) are compared against each other and also with data generated by Direct
Numerical Simulations (DNS) in Section 4. The results for the conditional expected
scalar dissipation, and the conditional expected scalar dissipations for all the closures
are discussed, respectively, in Section 5 and in Section 6. In Section 7, some theoretical
remarks pertaining to the evolution of the scalar in an isotropic field are presented. With
this presentation, the problems associated with all three closures become more clear.
In Sections 2-7, the discussions are limited to those associated with the transport of a
passive scalar from an initially symmetric binary state in isotopic turbulence. Therefore,
in Section 8 some discussions are presented of the applications of the models for treating
more general problems. This paper is drawn to a conclusion in Section 9.

2 BINARY MIXING PROBLEM

We consider the mixing of a scalar variable _ = ¢(x, t)(x is the position vector, and t
denotes time) from an initially symmetric binary state within the bounds _bt < _b< _bu.
In this section, we assume that the lower and the upper bounds of the scalar range
remain fixed (i.e. 4_u,_ell are constant). Within this domain, the single-point PDF of
the variable _bat initial time is given by

Pl(dp, t = 0) = l[8(_b - _bt) + t_(_b- _bu)], (1)
L

±
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FIGURE la The comparison of the PDF's as predicted by the models with DNS data. (a) a 2 = 0.173.

which obviously infers the following relations for the mean and the variance

< _ >= (_ + _t)/2, < _,2 >= _2 = _(_, _ _t)2. (2)

Here, i L indicates the probability mean, a2 denotes the variance, and the prime represenis
the instantaneous deviation from the mean. In isotropic incompressible turbulence, the
evolution of the PDF is governed by the transport equation

c3P.__.[=+ 02(epl) = O,at < _b< O. (3)
at 002

where • represents the expected value of the scalar dissipation with diffusion coefficient
F, _(= I'V4_ • V4_), conditioned on the value of the scalar q_(x,t),

• = •(_b, t) =< _14_(x, t) > . (4)

Equation (3) can alternatively be expressed by

OPl O(DPI)
w + _ =0,,h <_<_=,
ot 04)

where D denotes the conditional expected value of the scalar diffusion

O = O(¢,t) < rV24_l_b(x,t) >.

(5)

(6)

r
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The closure problem in determining the PDE Pl, is associated with the unknown
conditional expected dissipation, c, and/or the conditional expected diffusion, D. These
two are related through Eqs. (1)-(6),

1 O(eP1 )

D(q),t) = PI(_P,t) O_ (7)

At the single-point level neither the conditional mean dissipation nor the conditional mean
diffusion are known (neither are their unconditional mean values). Their specifications
require external information.

With the application of the AMC, this external information is obtained in an implicit
manner. As explained in detail by Pope (1991), the AMC involves a mapping of the
random field of interest ¢, to a stationary Gaussian reference field 4,0,via a transformation

= X(¢_0, t). Once this relation is established, the PDF of the random variable _, Pi (_b),
is related to that of a Gaussian distribution. In a domain with fixed upper and lower
bounds, i.e. fixed _t, Su, the corresponding form of the mapping function is obtained by
Pope (1991). The solution for a symmetric field with zero mean, < _ >= 0, _bu= -_t,
is represented in terms of an unknown time 1"

X(c_o,7")=_=erf (c_2G) ,GO')= v/exp(2_-) - 1.

With this transformation, the PDF is determined from the physical requirement

Pl(x(dPo, r), r)dx = PG(_0)d_0,

(8)

(9)
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where PG denotes the PDF of a standardized Gaussian distribution, Le. PG(gbo) =
I

exp(-@2/2). A combination of Eq. (8) and Eq. (9) yields

o [Pl(4_,r) = _ e×p - 1) err-l( ) . (10)

In these equations, the relation between r and the physical time t is unknown in
the context of a single-point description. This relation can be obtained only through
knowledge of the higher order statistical properties of the scalar field. For example, it
is shown by Madnia et aL (1992); Frankel et aL (1992a) that the mapping closure yields
the algebraic relation for the normalized variance,

<<a2>(r)=2arctan(a2>(0) -_r G_+2)' (11)

in which the variance is related to the unknown mean dissipation e(t) by integrating Eq.
(3),

d_r

o'_- = --e(t), (12)

where,

e(t) = Pl(_b, t)e(_, t)ddp = -- -OtOPl(Ck, t)D(_b, t)ddp.
?

(13)

L.
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3 JOHNSON-EDGEWORTH TRANSLATION

The AMC captures some of the basic features of the binary mixing problem as described
by Pope (1991). Namely, the inverse diffusion of the PDF in the composition domain
from a double delta distribution to an asymptotic Gaussian distribution centered around
< _ >, as a2 --* 0 (or G --* oc). This asymptotic Gaussian distribution near the mean
scalar value cannot be realized in any of the previous mixing models based on the so

called Coalescence/Dispersion (C/D) closures (Curl, 1963; Janicka et al., 1979; Pope,
1982; Kosaly and Givi, 1987). And those modified C/D models which do yield such an
asymptotic state, e.g. Pope (1982), do not predict the initial stages of mixing correctly
(Kosaly, 1986). This deficiency of the C/D models in yielding asymptotic Gaussianity has
been a motivating factor for recent investigations resulting in the development of the
AMC (Pope, 1991).

In the spirit of "mapping" to a specified reference field, it is speculated that there are
perhaps other means of "driving" the PDF toward Gaussianity in a physically acceptable
manner. In fact, this subject has been of major interest to statisticians and biometricians
within the last century since the early work of Edgeworth (1907). The scheme was
referred to by Edgeworth as the Method of Translation, and was later detailed by
Johnson (1949a). In today's literature of statistics and biometrics, the scheme is known
as Johnson-Edgeworth frequency generation, and has many applications in statistical
analysis.

The essential element of Johnson-Edgeworth Translation (JET) is similar to that of
the AMC. Namely, it involves the transformation of the random physical field, here, _,
to a fixed standard Gaussian reference field by means of a translation (or mapping) of
the form

0=+[
q(t = 0) = 0 < 7(t) _< 7(t --* oo) _ _. (14)

In this equation, the function 7(t) plays a role similar to that of G in the AMC. With
an appropriate form for the function Z, the scalar PDF is determined from Eq. (9).
For application in the problem of mixing from an initially symmetric binary state of zero
mean within a fixed domain _bt = -4,u _< 4, _< _b_, the appropriate JET must satisfy the
following physical constraints:

(i)Lim(,y_..o)Z ( _ ) _ H (cbo).

(ii)Lim(__.,,,o)Z( _) ._ C 4)o + 0(¢_) + OOD

(iii) Z(_) is an odd function with respect to the scalar mean for any value of a2. (iv)

Z(_) is bounded and is a non-decreasing function of ¢_0, and -4'u _< Z < 4_, at all
times.

(15)

In theserelations,H denotesthe Heavisidefunction,and C isconstant.Constraint(i)

impliesan initiallysymmetricand segregatedbinarystate.The second constraintensures

an asymptoticGaussian distributionforPI(40near the mean scalarvalue.Condition(iii)

preservesthe symmetry ofthe PDF around thc mean valueatalltimes,and constraint

(iv)impliesthe boundedness of the scalarfield,i.e.-_b_ < 4)_<¢_,,.A functionZ

t==

t
i
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which satisfies all the above constraints, is therefore expected to provide an acceptable
means of approximating the PDE An example is the Logit-Normal (or tanh-I-Normal)
distribution, as originally proposed by Johnson (194%). For the symmetric problem
within a fixed domain, this distribution is produced by a mapping of the form I

Z = ¢butanh (_-_). (16)

With this mapping, together with Eq. (9), the PDF of the scalar adopts the form,

(:I3' exp tanh-l( ) (17)

It is easily verified that this frequency satisfies the physical constraints of the symmetric
binary mixing problem (Eq. (15)). At t = 0, the PDF is approximately composed of two
delta functions at $ = +$,,, and as t ---* oc the PDF adopts an approximate Gaussian-
like distribution centered around the zero mean. These features are similar to those

portrayed by the PDF generated by the AMC (Eq. 10)).
This example demonstrates that with the satisfaction of the above indicated constraints,

several other frequencies can be generated for effective modeling of the binary mixing
problem. In fact, it is easy to show that the solution generated by the AMC can also be
viewed as a member of the JET family. This is demonstrated by considering a translation
of the form

Z =ck_erf(_), (18)

From Eq. (9), this translation yields the PDF

pl(6,t) = "Y -(Texp - 1) err-l( .
(19)

This frequency can be termed the erf-|-Normal distribution and is identical to the form

presented by Eq. (10). The difference is due to the terms containing G and 3,. But this is
unimportant since in the context of single-point statistics neither of the two parameters

can be determined by the PDE Therefore, with G -= 5' both expressions are equivalent.

With this equivalence, the closed form relation for the variance of the eft-I-Normal
distribution has the same algebraic form given by Eq. (11). It is easy to show that many
other distributions can be generated to display similar characteristics. In the discussions
to follow, we only consider the Logit-Normal and the erf-|-Normal distributions, the
latter being identical to the distribution generated by AMC.

Pearson Family

The similarity of the AMC and JET in generating equivalent PDF's is also useful in
explaining the applicability of the frequencies generated by the Pearson family (Pearson,
1895). For a "bimodal" distribution, a physically acceptable frequency is the Pearson

i In recentliterature,the Log,it-Normal is usuallyexpressedby the mappingZ = ¢u2[1 + exp(C_o/"r)]-I - 1.

m



9 TeX output 199J.O_.21:142b (8)

R. S. MILLER, S. H. FRANKEL, C. K. MADNIA AND P, GIV1

=

==

0
r-

0
0
0

0
0
0

O-so 4

FIGURE 2 Temporal evolution of the Logit-Normal PDE

Type I, known as the general form of the "Beta density of the first kind". This density
is typically expressed in a fixed domain within the range 0 < d' _< 1,

P_(@)= B(D1 )_'-I(1r -- --_)_ -- l , 0 _ _ _ 1. (20)

Hcrc B denotes the Beta function,and the paramctcrs_i and _ arc dctcrmincdfrom

the knowledge of the mean and the varianceof the random variablc.In a symmetric

fieldwithin[0,i],< _b>= ½,_l = /_ =/3, and thus the PDF ischaracterizedby the
variancealone.

Thc similarityof thePearson distributionsand the JET frequenciesiswellrecognized

inthe statisticsliterature(sccJohnson (1949a)).Therefore,withthc equivalenceofthe
AMC and the JET as demonstrated above, itisnot surprisingthatthe Beta density

and thc AMC are alsosimilar.This similarity,withouta mathcmaticalproof,has been

recognizedinpreviousworks (Madnia etaI.,1991b;Madnia and Givi,1992).

4 COMPARATIVE ASSESSMENTS

The probability distributions obtained from the three frequency generation methods
described above are all capable of providing a reasonable stochastic approximation of

m
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the mixing problem from an initially binary state. Namely, an approximate double delta
distribution at t = 0, and an approximate Gaussian-like distribution as t -. oc. The
former can be realized in the limit of unity normalized variance o2(t)/o-2(0) = 1. In a
fixed composition domain, this corresponds to G = 0 for AMC (-y = 0 in JET), and
to/Y = 0 for the Beta density. The latter is realized in the limit G,_,,/3 -. oo. The
limiting Gaussian distribution for the AMC has been asserted by Pope (1991). For the
JET, the criterion (ii) in Eq. (15) guarantees this condition. For the Beta density, the
assertion of an asymptotic Gaussian distribution in the limit of zero variance is established
in elementary texts on statistics (e.g. Casella and Berger (1990)). At the intermediate
stages, however, the PDF's are not identical. It is easily verified by Eqs. (10), (20) that

the AMC and the Beta distributions become constant (Pl(_) = constant - ½_bu) for
G =/Y = 1. However, the Logit-Normai PDF does not yield a uniform distribution at
any stage of its evolution. Also, as indicated by Johnson (1949a) it is not possible to
provide a closed form algebraic expression similar to Eq. (11) for the variance of the
Logit-Normal distribution.

In order to make comparative assessments of the models, the frequencies generated
by the three methods (AMC, JET, and PF) are compared with each other, and also with
PDF's generated by Direct Numerical Simulations (DNS). The DNS procedure is similar
to that of previous simulations of this type. Since these simulations are not the major
focus of this paper, only a brief outline of the procedure is described; for a detailed
discussion we refer the reader to Madnia and Givi (1992). The subject of the DNS is
a three-dimensional periodic homogeneous box flow carrying a passive scalar variable.
The initial scalar field is composed of square waves with maximum and minimum values
of 1 and 0, respectively. These limiting values are arbitrary, and can be translated to
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appropriate _bu,_t for comparison to each of the models. At time zero, in most regions
of the flow, the scalar adopts these limiting values (with equal probability), and the
spatial regions between the initial maxima and minima are smoothed by a polynomial fit.
The degree of this smoothing is minimized, but limited by the computational resolution,
to ensure an approximate initial double delta distribution. The computational scheme
is based on a spectral-collocation procedure using Fourier basis functions developed
by Erlebacher et al. (1990a); Erlebacher et al. (1987); Erlebacher et al. (1990b). The
hydrodynamic field is assumed isotropic and is initialized in a similar manner to that by
Erlebacher et al. (1990a); Passot and Pouquet (1987). The code is capable of simulating
flows with different levels of compressibility (Hussaini et al., 1990). Here, only the
results obtained for a low compressible case are discussed. The resolution consists of
96 collocation points in each direction. Therefore, at each time step 963 is the sample
size for statistical analysis. With this resolution, simulations with a Reynolds number
(based on the Taylor microscale) of Rex w, 41 are attainable. The value of the molecular
Schmidt number is set equal to unity.

As indicated in Section 1, in order to compare the model predictions with DNS results
a matching is required of the higher order statistics of the field as generated by each
method. Here, this matching is done through the variance of the conserved scalar. These

results are presented in Fig. 1. This figure indicates that at initial times, _ w, 1, all
_,z(0)

the PDF's are approximately composed of two delta functions at _ = 0,1 indicating the
initial binary state. At longer times, the PDF's evolve throughan inverse-like diffusion
in the composition space. The heights of the delta functions decrease and the PDF's
are redistributed at other _ values within the range [0,1]. At very long times, the PDF's

w
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FIGURE 4a Comparisons of the normalized conditional dissipation as predicted by the three models with
the DNS data. (a) ¢2 = 0.079.

become asymptotically concentrated around the mean value in a manner that can be
approximated by a Gaussian distribution.

An interesting feature captured in Fig.l(b), is the capability of the Logit-Normal
distribution in depicting a subtle behavior in the frequency distribution. This feature is
the double "hump" characteristic of the DNS data at intermediate times and cannot be
realized by the AMC or the PF generated frequencies. All the previous DNS results
including those of Eswaran and Pope (1988); Givi and McMurtry (1988); Pope (1991)
portray this feature. The PDF's generated by the AMC, and the Beta distributions
adopt a constant value (of 1/2) when _2 = _ (for 0 _< ¢ _< 1). This corresponds to

(3 = 1, 7 = v_, _ = 1. This uniform distribution is not exactly realized in any previous
or present DNS results. Therefore, it can be speculated that in the absence of a better
alternative, the Logit-Normal distribution may provide the simplest means of providing an
assumed distribution for the statistical modeling of the symmetric binary mixing problem.
The complete evolution of the Logit-Normal PDF is shown in Fig.2.

Further quantification of the agreements noted above are made by comparing the higher
moments of the scalar field. This comparison is made in Fig.3. In this figure, results are
presented for the temporal variations of the kurtosis (#4) and the superskewness (#6)
of the scalar variable 6. For the Beta density, the higher order moments are obtained
analytically based on the knowledge of the variance. For the AMC, the analytical-
numerical results by Jiang et al. (1992) are used, while for the Logit-Normal PDF the
moments are calculated strictly by numerical means. This figure shows that initially, all
these moments are close to unity, and monotonically increase as mixing proceeds. For all
the models, the magnitudes of the moments asymptotically approach the limiting values
of 3 and 15, respectively, corresponding to those of a Gaussian distribution. The DNS

i
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the DNS data. (b) o 2 = 0.013.

results are in good agreement with the model predictions at all times. However, due to
obvious numerical difficulties, the simulations could not be continued until the variance

approaches zero identically.

5 SCALAR DISSIPATION

The results presented above indicate a good agreement between the model predicted
single-point statistics (PDF's and high-order moments) and the DNS data at all the
stages of mixing. These results also suggest an approximate asymptotic Gaussian state
for all the closure PDF's and those of the DNS. Here, it will be demonstrated that the

agreement between the DNS and the model predictions is very good at the initial and
the intermediate stages of mixing. However, the agreement worsens at the final stages.
Also it will be shown that none of the closures yield "exact" Gaussian distributions at the
final stages of mixing. In doing so, it is useful to note that a Gaussian PDF is defined,

and is only valid, for an unbounded domain. The frequencies generated here, are all
defined within a freed andfinite domain. For AMC, it has been established (Gao, 1991;
O'Brien and Jiang, 1991) that the finite boundary size at the initial time "maintains"
its influence at all the subsequent stages of mixing. In other words, the PDF adopts a

Gaussian distribution in the limit of zero variance only near the mean value of the scalar.
In order to show the departure from Gaussianity at scalar values away from the mean,
the conditional expected dissipation of the scalar field is considered.

Given the PDE as is the case here, Eq. (3) can be used to determine the expected

conditional dissipation. It has been shown by Girimaji (1992) (and will be discussed in
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(a) eft- ]-Normal.

detail in Section 7) that for a valid PDF within a defined range, -_b_ _ #_ _ _,, the
expected conditional scalar dissipation is given by

' °(L' )e(_,t)= Pl(_,t)Ot _ F(_b,t)d¢ , (21)

where F denotes the cumulative distribution function (CDF)

FF(_,t) = Pl(_b,t)d¢. (22)

With Eq. (21), the expected conditional dissipation can be evaluated for a given PDE For

example, for a Gaussian distribution of zero mean, PG(_, a2) = I _exp(-- _, --o¢ =

--_ _< a _< _u = co, with a non-stationary variance, o.2 = ¢2(t), it is easily shown that,

[' ]o(t ',-"" :)_(_,t)-- pof_,_2) _7 +_ :t_-_)+_expf-_-_-/_),-_<_<co
(23)

Noting that _b is an independent variable (of t), and evaluating the derivatives on the
RHS of Eq. (23) yields, after some simple manipulations,

do'

c(O,t) = constant = -tT_dt' (24)

B
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with the implications (derived from Eqs. (12)-(13)),

e(cb, t )

_(t---_ = constant = 1, (25)

at all times for all phi values in the range -oc to +o¢. Equations (24-25) indicate the
independence of the conditional scalar dissipation and the composition domain for a
Gaussian field. These results have also been obtained by Gao (1991); O'Brien and Jiang
(1991) by following a different mathematical procedure.

The conditional expected dissipation predicted by the models can be obtained by
following a similar course. For the AMC and the PF distribution, the conditional
dissipation fields have been obtained by Gao (1991); O'Brien and Jiang (1991) and by
Girimaji (1992), respectively. For the purpose of the discussions to follow, these results
are presented here in a different form for all three closures. For the erf--I-Normal
distribution, the instantaneous CDF is given by

F(_,t)=2 (l+erf [-_2ert-I(_u)]). (26)

Therefore, with Eq. (21), the conditional dissipation can be expressed in terms of the
corresponding PDE

e(¢,t)= Pi(cLt)Ot ¢, erf err (-_) d_b+ (O+Ou) • (27)
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Again, with an independence of _ and t this equation reduces to,

1 OH

e(_b,t) = Pl(cb, t) Ot ' (28)

where,

H = -._ ( )_,,erf(v2z)exp(-z_)dz._ (29)

For a PDF within a fixed domain, the integration procedure becomes simplified by
evaluating the time derivatives inside the integral. In this way, the results can be expressed
analytically. After some manipulations,

dH -v/'2fbu_2: exp -(1 + _-) err-l( ) ,dt = _'(2+3 '2)
(3O)

and, therefore

e($,t)= 7rT(2+..t2)exp -2 erf-l( ) .
(31)

From this equation, the total dissipation is obtained by direct integration of the conditional
mean dissipation field. The results, after significant algebraic manipulations yield

t(t) = (32)
rr(2+ "'f:')

xa 2 t 2

e(4_,t) 1 + sin [_'_(°_1-- --2err-I() (33)
= 1 sinr':-_] exp

L2o-.,(0)j

In the form presented above, Eqs. (31)-(33) portray several insightful features of the
solution. First, Eq. (33) indicates that the conditional dissipation is always dependent
on the magnitude of the scalar, and it maintains the same self-similar functional form

{[ ]of dependence e_ -2 erf-l(_) . This has been previously indicated by Gao

(1991); O'Brien and Jiang (1991). Here, the amplitude e(_ = 0, t) can be conveniently
expressed in terms of the variance decay, which is very useful for further manipulations.
Second, it is interesting to note the similarity of F_xlS. (31) and (33) with the results
obtained for the instantaneous dissipation of Fickian mixing of a conserved scalar in
laminar non-homogeneous flows (such as the typical shear flows (Spalding, 1961; Milan,

1974; Peters, 1984)). This similarity further asserts the "permanent" influence of the
boundaries since in non-homogeneous mixing, the scalar bounds are "fixed" due to the
physical constraints. Finally, F__xi. (32) suggests an infinitely large dissipation at time zero,
i.e. when a2(t)/a2(O) = 1, and the asymptotic behavior

L. e(_)
t m(_:...0)----_ _,=o = 1. (34)

w
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FIGURE 6a Comparisons of the normalized conditional diffusion as predicted by the three models and

the LMSE closure, with the DNS data. (a) a2 = 0.079.

This limiting behavior near zero indicates the Gaussianity of the PDF only at the mean
value of the scalar.

Following a similar procedure, the conditional expected dissipation can be obtained
for the other closures. For the Beta density in the range 0 <_ _ _< 1, the final results can

be expressed as

(/00 )1 0 1¢(/3, _)d_ , (35)
e(_b, t) = Pl(dp, t)Ot

where, I denotes the Incomplete Beta Function (Abramowitz and Stegun, 1972). For
the Logit-Normal distribution, the corresponding form is

C(t_,/) = err In d_b .
el(_a,t)Ot _. [kl--_.]

(36)

Neither of the equations (35-36) can be simplified further. Therefore, in order to evaluate
the conditional expected dissipation (and the total dissipation), these equations must be

evaluated numerically.
In Fig. 4, the evolution of the conditional expected dissipation (normalized by the

total dissipation) is presented for the models and the DNS data. This figure shows the
similarity of the conditional expected dissipation for all of the models. The bell shape
distribution is evident in all the figures with a maximum amplitude near the mean value.
Also, as the variance decreases and the PDF becomes concentrated near the mean, the

w
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amplitude tends to unity. This shape is typical of that observed in previous DNS results
of Eswaran and Pope (1988); Nomura and Elgobashi (1092).

The results in Fig.4 show the _ dependency of the results at all the stages of mixing. That
is, the PDF asymptotically adopts an apparent Gaussian-like distribution only near the
mean value of the scalar, and the conditional dissipation does not become independent
of the scalar everywhere. For the AMC, this has been discussed by Gao (1991); O'Brien
and Jiang (1991). Considering the similarity of the three models, it is therefore concluded
that all three models yield the same characteristics. These results also suggest a poor
agreement between the model predicted conditional expected dissipations and the DNS
data. Note that at the initial stages of mixing, the predicted results compare well with
DNS data. However, with mixing progression, at smaller variance values, the agreement
is only good near the mean scalar value and worsens near the bounds of the composition
domain. This, as described above, is due to the permanent influence of the scalar
boundaries at all the stages of mixing.

6 SCALAR DIFFUSION

Albeit directly related to the conditional expected dissipation (Eq. 7), it is useful to
examine the behavior of the conditional expected diffusion in light of the discussions
above. Given the PDE again within the fixed range -Ou < _b < _b,, the conditional
expected diffusion can be determined from

1 OF
D(_, t) = (37)

P](O, t) Ot
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This equation is very useful in illustrating the properties of the PDE For example, for a
Gaussian distribution within an infinite domain

OF fb do. 2 02

0"7 = V_0. 2 d t exp(- _-_), (38)

and consequently

D($,t) = -4, (39)
e(t) 0.2(t)"

It is noted that Eq. (39) is in accord with the Linear Mean Square Estimation (LMSE)
closure (O'Brien, 1980).

The mean conditional diffusion can be determined for the three models considered.
For the eff-_-Normal PDF with zero mean

O..ff_F= 1 dTexp - erf-'( ) erf-1( )
Ot _ dt

(4o)

Again with explicit equations for the total dissipation and the variance, it is possible to
obtain an algebraic expression for the conditional expected diffusion. The results after
substantial algebraic manipulations yield

( I II :11 :D(#i, t) _x/- _ 1 + sin [_j 2

e-'_-) = sin[.:_Z_] [-_2C,)] exp -erf-l( ) err-I( ).
[ 2o-'to)] 1 - sin [_'6_]

(41)

In thisform Eq. (41)isvery pleasingsinceitdoes revealthe (t,_)separability,and thus

theself-similarity,ofthe diffusionfield.The termsinsidetheparenthesison the RHS are

time dependent,whereas the remainingterms depend explicitlyon _ only.As indicated

by O'Brien and Jiang (1991),thisseparabilitycannot be easilydeduced from Eq. (5),

but ispossiblewith the analyticalprocedure followedabove.The temporal evolutionof

the conditionalexpecteddiffusionforthe eft-LNormal distribution,and itscomparison

with thatofthe LMSE closureispresentedinFig.5.

By followingthe procedure above,analogous expressionsare obtainedfor the other
two closures.Namely,

D(_, t) 2$u d7

_(t) 7 d0. 2 [I-- (_u)2]tanh-'(_), (42)

for the Logit-Normal distribution of zero mean, and

D(qb, t) = 2 OI,(B, B) (43)
e(t) Pl($, t) 00 .2

for the symmetric Beta density within [0,1]. Equations (42)-(43) cannot be simplified
further due to the lack of an explicit analytical relation for the variance of the Logit-
Normal distribution (Johnson, 1949a), and the unknown analytical form of the derivatives
of the Incomplete Beta Function.

= :

r.,,
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FIGURE 7 The temporal variations of ¢_max and _min generated by DNS.

In Fig. 6, results are presented of the conditional expected diffusion as predicted by the
three models, and also that of the LMSE closure. In these figures, the DNS data are also

provided at several variance values. The similarity of the modelled results are once again
revealed in these figures, which is expected in view of the PDF similarities. At all times,
the conditional diffusion field has an odd distribution near the mean scalar value. On

the right half of the composition domain, all three closures yield a monotonic decrease
of D to an instantaneous minimum, and then a monotonic increase to zero at the upper

bound of the scalar. The location and the magnitude of the instantaneous maxima and
minima is not the same for the three closures. Also, as Eqs. (41)-(43) indicate, the

zeroes of D can only be realized at q_= 0, +¢_=. At the initial times, i.e. large variances,
all three closures agree reasonably well with the DNS data. This agreement is better
for the three models than for the LMSE closure. However, as the variance becomes

smaller, the agreement between the model predictions and the DNS data worsens. It
is noted that as the variance becomes small, all the closures yield a Gaussian-like PDF

near the mean value of the scalar. This is shown in the figures near _b=< _b > (= ½
for DNS), where the predicted results are in accord with the LMSE closure,/.e, linear
profiles of similar slopes. In this region, the results are also in accord with DNS data for
all the closures including the LMSE. However, again, the predicted results deviate from

the DNS data away from the mean value. It is clearly noted that the DNS generated D
values do not go to zero at the scalar bounds.

7 EVOLUTION OF THE SCALAR FIELD

The problems described at the conclusion of the previous two sections stem from a
lack of capability of all of the models in accounting for the variations of the scalar



DVIAP5 ATLI5 Pubhs_ng, Inc.

21 TeX output 199301.21:1426 (20)

20 R. $. MILLER, S. H. FRANKEL, C. K. MADNIA AND E GIV1

m

m

tO
st
tO

0
0
0

v-

0
0
u_
g

0

0
0
0

_-o
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bounds as the mixing proceeds. For all three models, the PDF is always defined within a
fixed range through its course of evolution. It is easy to show that both the conditional
expected dissipation and the conditional expected diffusion are correctly predicted by all
the models near the mean scalar value. For the eft-- re.Normal distribution, this is evident

from Eqs. (33) and (41) and can be also shown by analyzing the behavior of Eq. (31)
near the region @ _ 0, as the variance becomes small. Noting that

Lim(,_o)erf(_) _ _ @2 cbu (44)

and, from Eq. (11)

it is easily concluded that

d7 -20, de

Lim(_,_o)-_-_ = V_a2 dt' (45)

at7
L i m(t--.oo)t( @ ._ O, t) = -a--. (46)

dt
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Following the same procedure, it is derived

Lim(,_._)D(@ ._ 0, t) = -_-_@. (47)

Due to the similarity of the three closures, it is reasonable to expect similar behaviors

for the other models as well. Equations (46)-(47) indicate a Gaussian-like distribution

near the mean @ ,_, 0 (Eqs. (24,39)). This is in accord with the DNS data. However, at

distances away from the mean value the predicted results do not correspond to that of

a Gaussian field. Neither do these results agree well with DNS data. The deficiency of

the models in predicting the DNS results is made clear by considering the bounds of the

scalar field as the mixing proceeds. This is demonstrated in Fig. 7, showing the temporal

decay/growth of the scalar maxima/minima obtained by DNS. This trend is consistent

with physical intuition, but is not incorporated into any of the three models. In the

AMC and the JET generated frequencies, due to the nature of the translation Z(@0, t)

and the constraints imposed by Eq. (15), the scalar is always bounded within the same

range. This problem is also encountered in the PE in that Type I and II distribution

families are always defined within the same fixed domain regardless of the magnitude of
the variance.

With the examination of the PDF transport equation, it is shown that the physics

of the problem requires the migration of the scalar bounds toward the mean value

as the mixing proceeds. That is, the instantaneous values of the scalar minima and

maxima change with mixing progression. To demonstrate this, again consider a symmetric

field with a PDF, P1(¢, t), defined within the time-dependent domain of zero mean,

_'[¢min(t ) = --t_max(t), t_max(!)]. At all the stages of the evolution, the PDF must satisfy

the physical requirements

_,,,,(t) Pl(dp, t)d_ = 1,
._(t)

¢=,_(t)< _b >= cPPj(O, t)ddp = O,
a ¢,_,,(t)

a2(t) [¢"_'(')= $2p1 ($, t)dcb,

.t #.=,.(t)

The first of Eq. (48) requires

(48)

d [¢'='W)pl(@,t)d ¢ = 0 (49)
_" ..'_n(t)

Evaluating this integral via Leibnitz's rule, and making use of Eqs. (3)-(7), it is shown
that

[dOm_
Pl($max(t), t) [ d-7

[d_bmin
O(_bmax(/),/)3 =/'l(¢mi.(t), t) L d7

_m_(0) = 4,., 6m_.(0) = 4,t = -4,..

1

- D(Omin(t), t)J = 0,

(50)
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Following the same procedure for the second of Eq. (48), yields the obvious requirement

*_(O D($, t)P1($, t)d$ = 0. (51)
i,(t)

The third part of Eq. (48) yields Eq. (12), and

Pl(_max(t), t)_'(C_max(t), t) = Pl(_min(t),/)6"(_min(t), t) = 0,

P_(_m_,(t),t) L dt D(_ma_(t),t) =

fd ,. ]-Pl($min(t),t) [ dt D($min(t),t) = 0. (52)

The remaining parts of Eq. (48) yield higher order statistical information pertaining
to the inner integrated evolution of the conditional expected dissipation and diffusion,
and their relation with the higher central moments. With an additional assumption of a
nonzero PDF within the region of its definition, that is by defining $ma_(t) and $min(t)
as the extreme locations with nonzero PDE a combination of Eqs. (50) and (52) yields

e(_bmax(t),t) = e(_bmin(t), t) = 0,

d_bmax OE

= -_lOmax = D(_max(t),t),

d_min O_
= -£'7[_Pmin= D(_min(t),t),77 oq_

Omax(O) = _bu,_bmin(0) = Or. (53)

Equation (53) indicates that with fixed boundaries, the conditional dissipation would
adopt a zero slope at the boundaries and the conditional diffusion would also be zero
there. However, Fig. 7 indicates that in a physical situation the boundaries are not fixed
and move inwards as the mixing proceeds. It is interesting to note that this problem
is not observed in the numerical results obtained by the C/D type closures. That is,
while the C/D closures are not capable of predicting the PDF evolution in accord with
DNS data, they do have the mechanism for shrinking the bounds of the composition
space. Obviously, in the context of single-point description without the knowledge of
the dissipation field, it is not possible to determine a priori the temporal bounds of the
scalar field. Therefore, the closures can be modified only by making further assumptions
in describing this transport. For a general case, the JET frequencies can be generated
by the original form proposed by Johnson (1949a)

_b(_b0,t) = A(t)z (_bT-_)) + _0(t), (54)

where the additional parameters A(t) and 0(t) provide the extra degrees of freedom in
order to account for the variations of the instantaneous boundaries of the composition
domain. For the PF, the problem can be overcome, for example, by considering a
"four-parameter Beta distribution"

1 (
el(q_, t) = [q_rnax(t) -- ¢_min(/)]B(fll,/32) \_max(t) --_min(t)] "
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FIGURE 9a The comparison of the conditional expected scalar dissipation normalized with the total

dissipation with DNS data as predicted by the AMC with the scalar bounds determined from the DNS results.

(a) _2 = 0.079.

,_- ,/,,._.(t) "_-_! - ¢_m=('T)--_m_,(t) ) , _m,,(g) <--_ --<_max(t),
(55)

with the extra two parameters being (brain(t) and _maa(/)- For a symmetric PDF in the
range [0, 1] _= [_bmin(t= 0) = tkt,_max(t = 0) = _u; therefore, the variance decay
can be influenced by increasing /_, and/or by decreasing the scalar range A_(t) =
q_max(t) -- _bmin(t). The former recovers the well-known two-parameter Beta distribution
(Pearson Type II), while the latter is approximately equivalent to the LMSE closure
(O'Brien, 1980). This latter case is presented in Fig. 8 showing a symmetric Beta density
with #(t) = fixed = 0.1. Note that as the mixing proceeds, the variance decays but the
PDF preserves its initial approximate double delta shape. In a physical problem, the
situation is somewhere between these two limiting cases. The exact situation depends
on the characteristics of a particular mixing problem.

The discussions above suggest that in order to predict the final stage of mixing correctly,
the effects of mixing on the shrinkage of the domain must be taken into account. To
demonstrate this point, the results shown in Fig. 7 can be incorporated into the mixing
models to determine the evolution of the conditional expected dissipation and diffusion.
This is done here only for the eft -_-Normal, and the results of the conditional expected
dissipation are shown in Fig. 9. In the calculations resulting in this figure, analytical
solutions are not possible for the moving boundary case. This is demonstrated by the
equivalent form of Eq. (29)
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(b) a 2 = 0.013.

w

w

v_ 1 + _Z az + (_ + '/'m,,,,(f)).
(56)

With this equation, therefore, the effect of the temporal variation of the PDF on the
conditional dissipation is through the OH/at term in Eq. (28). This term has the form

dH : -V_m._(t)_ e_ -(1+ _) erI-_( ) + 2 d¢
dt _'(2 + ,_2)

1 ¢ exp err-I( ) +
_max(t)

er -! ¢" \

2 f : (_,,_'_)
"_ J-_ erf(x/._)exp(_z2)d z'rz) .

(57)

The first term on RHS of Eq. (57) is the same as that in Eq. (30), and the effects of moving
boundaries manifest themselves through the second term. This term cannot be evaluated

analytically. However, Eqs. (56)-(57) show that due to the direct dependence on -d-_t,

m

w
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the conditional dissipation does not retain its original functional dependence, suggested
by Eq. (33). Also, Fig. 9 shows that the effect of the moving boundaries is to force the
conditional expected dissipation to zero at the current scalar maxima/minima. Therefore,
the predicted results compare much better with DNS data than those presented in Fig.
4. Due to the similarity of the PDF's, it is expected that the other two closures would
also behave in the similar fashion.

The influence of boundary encroachment is also sensed in the conditional expected
diffusion field. For the erf-'-Normal scalar PDF, the equivalent form of Eq. (41) is

{I2Om_(t)d'r exp - erf-l( )
D(cb, ,) = "yV/_ dt

erf-i (_m_) + (_m_) dOra''''_dt' (58)

with an average dissipation of

402ax(t) d7 2_max(t) arctan (59)
e(t) = 71"("/2+ 2) 72V/'_ d t 7r 7 d t

Equations (58)-(59) show the influence of the boundary movement through the last term
on the RHS of both these equations. With these additional terms, the normalized form
similar to Eq. (41) is not very useful, and Eqs. (58)-(59) are evaluated numerically.

The equivalent of Eq. (58) for the Logit-Normal and the Beta density are, respectively,

O--_ax"-_ d t tanh-1 + d t '
(60)

'°( )D($,t)= Pl(O,t)Ot I{_}(/3,/3)
(61)

An interesting characteristic displayed by Eqs. (58) and (60) is the influence of the
terms containing the temporal derivative of Cmax(t). Note that at the boundaries, i.e.

= _max(t), the first term on the RHS of these equations vanish, but the last term

prohibit the conditional expected diffusion from going to zero. This is in accordance
with the DNS data as shown in Fig. 6. In order to demonstrate this more clearly, results
are presented in Fig. 10 of the conditional expected diffusion predicted by the err -l-
Normal, with the input of the variance and the scalar bounds from DNS. A comparison
between this figure and Fig. 6 show the influence of the boundary movement, and a
better agreement between the model predictions and the DNS data. This agreement
is more pronounced at scalar values away from the mean. Near the mean value, the
influence of the boundary migration is slight, as also indicated by Eqs. (58) and (59).

8 DISCUSSIONS AND APPLICATIONS

In the previous section, a rather detailed discussion was presented of the problem of
scalar mixing from an initially symmetric binary state. These discussions were primarily
intended to provide a means of assessing the differences between the currently available
tools in probability modeling of the scalar mixing problem. This problem is of significant
interest, considering the extent of previous works focused on its analysis (Pope, 1976;

w
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FIGURE 10a The comparison of the conditional expected scalar diffusion normalized with the total
dissipation with DNS data as predicted by the AMC and the LMSE closures with the scalar bounds
determined from the DNS results. (a) _2 = 0.079.

Pope, 1979; Pope, 1982; O'Brien, 1980; Dopazo, 1973; Kosaly and Givi, 1987; Pope, 1991;
Gao, 1991; O'Brien and Jiang, 1991; Nomura and Elgobashi, 1992). The results obtained
here are particularly useful in highlighting some of the deficiencies of these closures,
and in suggesting future research towards overcoming these drawbacks. There are,
however, many other physical problems that are not subject to the restricting conditions

imposed in these analyses. In this section, therefore, some discussions are presented as
to the practical implications of these models, together with some speculations on their
extensions for future applications.

Perhaps one of the most important practical applications of the closures considered here
is the treatment of reactive flow phenomena. In fact, the most important advantage of
scalar PDF methods is due to their applicability in the modeling of turbulent combustion
(Pope, 1979; Pope, 1985; Pope, 1990; Kollmann, 1990; O'Brien, 1980). The results
generated here can be used directly in the modeling of mixing controlled homogeneous
chemically reacting systems. Namely, in examining the compositional structure of a
reacting system under chemical equilibrium, or in determining the limiting rate of
reactant conversion in a simple chemistry of the prototype Fuel + Air _ Products.
The determination of this rate has been the subject of extensive investigations over
the past forty years (see Hawthorne et al. (1949); Toor (1962); Williams (1985)). It is
now well-established that in a mixing controlled binary irreversible reaction of this type,
the statistics of the reacting fields can be related to those of an appropriately defined
conserved scalar (such as _) (Bilger, 1980; Toor, 1975; Williams, 1985). Therefore,
the frequencies generated herein can be utilized for estimating the statistics of the
reacting field with an infinitely fast chemistry model in a homogeneous flow with an
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initially segregated reactants under stoichiometric conditions. Albeit very restricting, this
problem is of great practical importance for modeling and design of batch mixers and
plug flow reactors in which these conditions prevail (Toor, 1975; Brodkey, 1981; Dutta
and Tarbell, 1989). Madnia et al. (1991b); Madnia et al. (1992) have shown that with
the erf-l-Normal (AMC) and the Beta density models, this rate can be predicted by
simple analytical means. For the Logit-Normal density, a complete analytical solution
cannot be obtained and determination of the statistics requires numerical integration of
the PDE The results generated by these closures agree with DNS data better than those
obtained by means of the C/D closures (McMurtry and Givi, 1989), or other models
previously available in the chemical engineering literature (Dutta and Tarbell, 1989) (see
Givi (1989) for a review). Also, the results provided by the AMC (Frankel et aL, 1992a)
are shown to compare well with experimental data on plug flow reactors if the additional
information pertaining to the evolution of the scalar length scale is accurately provided.

The most obvious issues in regard to the applications of these models are associated
with their extension for the treatment of (1) non-symmetric binary scalar mixing, (2) non-
binary scalar mixing, (3) multiple scalar mixing, and (4) non-homogeneous mixing. The
first problem constitutes a more general form of the binary mixing problem and is also
important for the analysis of non-stoichiometric reacting systems. The second problem is
appropriate for the analysis of other mixing systems in which the initial conditions are not
of a two-feed configuration. The third problem is of interest in reacting systems in which
the transport of a passive scalar (like @) is not sufficient for a complete analysis. For
example, any reacting system under non-equilibrium conditions. Finally, the importance
of the fourth problem is obvious in view of the fact that the flow within most practical
mixing devices cannot be assumed homogeneous.

In regard to the first issue, all of the three closures considered here can be used for the
probability modeling of scalar mixing within a riced scalar domain. The use of the AMC
is straightforward, but the mathematical procedure is somewhat complex (Madnia et aL,
1992). The Pearson frequencies can be generated easily for non-symmetric problems.
In this case, the Pearson Type I provides a reasonably accurate representation of the
scalar field regardless of the degree of asymmetry of the PDF (Frankel et aL, 1992b;
Madnia et aL, 1992). The use of the JET in this regard is most difficult, since closed
form analytical expressions are not available for the variance of the scalar by which the
PDF can be characterized (Johnson, 1949a). In treating these problems, therefore, the
first two models can be more readily employed and subsequently used for the treatment
of mixing controlled reacting systems under non-stoichiometric conditions. In fact, as
demonstrated by Madnia et aL (1992) the solution of the non-symmetric form of the
AMC and the Beta density provide a very good means of predicting the limiting rate
of reactant conversion in homogeneous reacting flows. However, it should be indicated
that with both models the problem associated with the scalar bounds still exists and must
be dealt with as discussed in Section 7.

In addressing the second issue, it is obvious that the AMC is more appropriate than
the other closures for simulating the mixing problem from an initially "arbitrary" state.
The extension of JET and PF for treating multi- (higher than hi-) modal distributions
have been reported in statistics literature. However, as the degree of modality of the
PDF increases the procedure becomes more complex and not suitable for practical
applications. Fortunately, in most mixing problems in simple flows, i.e. homogeneous
turbulence and turbulent shear flows, the PDF exhibits strong bimodai features (Madnia
et al., 1992; Frankel et aL, 1992b). In those cases, the use of the Beta density can be
justified. In fact, in non-homogeneous flows it is easier to use this density, at least until
further developments of the AMC for practical applications (see Frankel et al. (19921));
Gaffney et aL (1992)).

,m..
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FIGURE 10b The comparison of the conditional expected scalar diffusion normalized with the total
dissipation with DNS data as predicted by the AMC and the LMSE closures with the scalar bounds

determined from the DNS results. (b) a 2 = 0.013.

The extension of all of the three models in describing multi-scalar mixing is possible.

The problem naturally falls within the realm of the multivariate statistical analyses. In these
analyses, the implementation of the AMC is relatively straightforward since it provides
a transport equation for the joint PDF's of the scalar variable in a multivariable sense
(Pope, 1991). However, it is not presently clear how to devise an efficient computational
procedure, typically based on Monte Carlo methods (Pope, 1981), for the numerical
treatment of these equations. Some work in this regard is currently under way (Valifio
and Gao, 1991). The extension of assumed distributions based on the Beta density for
treating multi-scalars is more straightforward but less trivial to justify. The most obvious
means is to implement the multivariate form of the PE The direct analog of the Beta
density is the Difichlet frequency (Johnson, 1987; Narumi, 1923; Johnson and Kotz,
1972). The application of this density in modeling of multiple species reactions has been
discussed by Girimaji (1991a); Girimaji (1991b); Gaffney ez al. (1992). However, the
use of the Dirichlet frequency cannot be justified for modeling of reacting flows in a

general sense (Frankel, 1992). Finally the extension of the JET in generating multivariate
frequencies has been reported in statistics literature since the subsequent work of Johnson
(1949b). As one may suspect, the procedure is more complex, and the same reservations
as those associated with the Dirichlet distributions apply.

All of the models considered here can be extended for the analysis of non-homogeneous

mixing (and reacting) systems. Obviously, in most cases, the problem requires numerical
integration of the appropriate conservation equations. For instance, the AMC can be
invoked in the mixing step of a fractional stepping procedure, similar to that of typical
Monte Carlo procedures (Pope, 1981). The PF densities (e.g. Beta or Dirichlet) and JET
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generated frequencies require modelled transport equations for the first two moments
and cross moments of the scalar field. These equations, "hopefully", include the essential
information pertaining to the spatial inhomogeneity of the flow. Naturally, the PDF is

not generally symmetric, and must be determined from the knowledge of the parameters
_l, _2, % A, 0, and the local _bmax(t), _min(t) values. With this information, all the higher

order statistics of the scalar field can be determined. In regard to this last issue, it must
be indicated that the Beta density has been extensively used for the modeling of non-
homogeneous reacting systems (e.g. Rhodes (1975); Jones and Priddin (1978); Lockwood

and Moneib (1980); Janicka and Peters (1982); Peters (1984); Frankel et al. (1992h);
Gaffney et al. (1992); for recent reviews, see Givi (1989); Priddin (1991)). Due to their
special mathematical properties, the Beta and/or the Dirichlet frequencies yield relatively

simple analytical solutions for the higher order statistics of the reacting fields. From
this point of view, the use of the PF is more practical than the AMC since the solution
procedure does not require the numerical treatment of the PDF transport equation. This

point has been discussed in detail by Girimaji (1991b). However, as indicated above, the
use of the Dirichlet frequency cannot be justified for modeling of unpremixed reacting
flow in a general sense. Also, there is no way of implementing this density directly for

modeling of non-equilibrium flames, involving strong correlation of the temperature and
the species mass fractions. Even with the assumption of statistical independence of the
reacting species and the temperature, the question of the local scalar range imposes a

severe restriction on the validity of this approximation. For example, it is demonstrated
by Gaffney et al. (1992) that in the modeling of a reacting turbulent shear flow, depending
on the a priori choice of the magnitudes of the local scalar bounds the predicted results

can be altered significantly. Obviously, this problem is not eliminated with the usage of
JET frequencies in either a univariate or multivariate sense.

9 CONCLUDING REMARKS

It is shown that the family of frequencies generated by the Johnson-Edgeworth Translation

(JET) provides a reasonable means for statistical modeling of binary symmetric scalar
mixing in homogeneous turbulence. It is also shown that the results predicted by one
of the members of this family is identical to the solution generated by the Amplitude

Mapping Closure (AMC) of Kraichnan. This similarity is useful in two regards: (1)
establishing a mathematical reasoning for the similarity of the probability frequency of
the Pearson Family (PF) and that of the AMC for the description of the problem, and (2)

suggesting the possible use of other members of the JET frequencies in approaches in
which the Probability Density Function (PDF) is assumed a priori. The PDF's generated
by all these models are shown to compare well with each other and also with the results

obtained by Direct Numerical Simulations (DNS). However, none of the models are
capable of accurately predicting the conditional expected dissipation and the conditional

expected diffusion of the scalar field. This problem is associated with the incapability of
the models to account for the migration of the scalar bounds as mixing proceeds.
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4 Appendix II

This work summarizes all our efforts to-date in LES of reacting turbulent flows. The primary

conclusion drawn from this work is that the procedure used in k transport equation should

be also followed for the _-transport equation. We are presently in the process of undertaking

this task.

m
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Abstract

A priori and a posteriori analyses of homogeneous and non-homogeneous flows are conducted

in order to assess the validity of assumed Probability Density Function (PDF) models as po-

tential subgrid scale (SGS) closures for Large Eddy Simulations (LES) of turbulent reacting

flows. Specifically, a priori analysis of homogeneous and non-homogeneous turbulent flow

is conducted, for both equilibrium and non-equilibrium chemistry, to investigate the po-

tential of the Pearson Family PDF's (Beta and Dirichlet) as SGS models. Also LES of a

two-dimensional turbulent reacting shear layer are conducted using a hybrid one-equation

Smagorinsky/PDF SGS closure model. The traditional Smagorinsky closure, augmented by

the solution of the subgrid turbulent kinetic energy (TKE) equation, is employed to account

for the hydrodynamic fluctuations and an assumed PDF is employed for treatment of the

scalar fluctuations. An isothermal reaction of the type A + B _ Products is considered. For

this reaction, the assumed PDF approach requires the local mean scalar values and the local

subgrid covariance. This covariance is obtained by solving an additional modeled transport

equation. This approach results in simple algebraic closures for the chemical source terms

appearing in both the species continuity equations as well as in the species covariance equa-

tion. The simulations are performed by using a hybrid spectral/finite-difference numerical

algorithm. Results are compared to those obtained via Direct Numerical Simulations (DNS)

of the same flow in order to assess the validity of our hybrid S/PDF closure.
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Large Eddy Simulations (LES) lie somewhere between Direct Numerical Simulations (DNS)

and Reynolds Averaged Navier-Stokes (RANS) computations. In DNS all relevant scales

are resolved and no attempt is made at modeling the statistical behavior of the flowfield

(Girl, 1989). In RANS calculations, all scales are modeled and moments above a certain

level (usually second) are truncated (Launder and Spalding, 1972). In LES the large, energy-

containing scales of motion are treated directly, while the effect of the small scales is modeled.

Thus scales below a certain level are truncated and modeled. LES is currently viewed as a

research tool, but because of the savings in computational resources over DNS, it has the

potential to be used for engineering applications.

Over the past 30 years, since the early work of Smagorinsky (1963), there has been rela-

tively little effort, compared to that received for Reynolds Averaged Navier-Stokes (RANS)

calculations, to make full use of the LES approach for engineering applications. The most

prominent model has been the Smagorinsky eddy viscosity model which relates the unknown

subgrid scale Reynolds stresses to the large scale rate of strain. The eddy viscosity performs

the predominant role of mimicking the dissipative behavior of the unresolved small scales.

One-equation models, which provide the subgrid scale turbulent kinetic energy as the veloc-

ity scale for the eddy viscosity, have shown improvement over algebraic models for coarse

grid simulations and for modeling higher order moments (Lilly, 1967; Schumann, 1975; tlo-

riuti, 1985). In transitional flows where the assumption of a balance between production

and dissipation may not always be valid, higher order models allow more freedom for the

subgrid scale eddies to adjust to local flow conditions (Rogallo and Moin, 1984).

LES of mixing layers have been conducted by Mansour et al. (1978), Cain et al. (1981),

Lesieur et al. (1988), garuyama (1988), and more recently by Ragab et al. (1992). With

regards to applying LES to chemically reacting turbulent flows the literature is even more

scarce. Schumann (1989) seems to have been one of the first to conduct LES of reacting

flows. However, his assumption to simply neglect the subgrid scale (SGS) contributions from

the chemical reactions is questionable. The importance of the scalar fluctuation correlations

in turbulent reactive flows has been well recognized (Libby and Williams, 1980). The success

of PDF methods for the treatment of chemically reacting flows has been associated with tile

closed form of the chemical source term (Pope, 1985; 1990; Givi, 1989). These methods

have been used extensively for the modeling of turbulent reacting shear flows in a variety of

different RANS applications (Lockwood and Naguib, 1975; Bockhorn, 1987; Franket et at.,

2
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1990). Recently it has been demonstrated that the Beta density provides reasonable means

for predicting the statistical behavior of a conserved scalar in both homogeneous and non-

homogeneous flows (Madnia and Girl, 1992; Madnia et aI., 1991; Frankel et al., 1991,1992).

Girimaji (1991) suggests the use of a Beta density for modeling of turbulence/chemistry

interactions in multivariate species fields. Gaffney et al. (1992) and Baurle et al. (1992)

have used the joint Beta PDF in RANS calculations with complex kinetic mechanisms. The

idea to hybridize the DNS approach with PDF methods for treatment of reacting flows is a

natural extension of the current technique and is warranted in view of predicted computer

capabilities for the foreseeable future.

In this work, we first consider a priori analysis of a homogeneous reacting flow in order to

assess the extent of validity of the Pearson type PDF's as a SGS model. Then, we propose

a hybrid SGS model in order to conduct LES of turbulent reacting flows. In both cases,

a chemical reaction of the type A + B _ Products is considered. The model consists

of the traditional Smagorinsky closure for the hydrodynamics with the turbulent kinetic

energy providing the velocity scale and an assumed PDF approach for treatment of the

chemical reaction rate terms. This technique requires the solution of an additional transport

equation for the subgrid scale turbulent kinetic energy and the species covariance. Results

are compared to those obtained without the PDF chemistry model as well as those obtained

directly by DNS.

2 Hydrodynamic Formulation

w The incompressible Navier-Stokes equations are,

-0 (i)
-__ _X i

w

OU i (_(UiUj) -- 10p 02Ui

o---(+ Oxj p + " OxjOxj (2)

Typically one defines a filter in order to delineate the resolved or large scale field from the

subgrid scale motions,

= f a(r- r')u(r') dr' (3)

where G is a filter function with characteristic length A. There are two main approaches

towards this filtering process. They are the prefiltering approach and the grid averaging



approach. In this work wechooseto employthe latter for its easeof implementation. Thus

all flow variables are considered to be grid averaged variables and as such can be decomposed

into subgrid scale fluctuations from the large scale field,

!ui=u_ -_: (4)

=

Applying the filter to the governing equations,

°-<'= o (5)
Oxi
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O----i"+ Oxj = -p Ox----_

The nonlinear term, uiuj, looks like

02N
+. (6)
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The last term depends on large scale components and is computable in LES. The subgrid

scale Reynolds' stresses are defined as,

(s)

This forms the focus of hydrodynamic SGS modeling. Typically one decomposes the SGS

stress into the sum of a trace-free tensor and a diagonal tensor,

1

"3 3
(9)

Substitute this into the equations,

O_-i, 0(_) _ 10-p Orij O(½5ijRkk) 02_
o---i-+ Ozj e Ox_ Ox_ Oxj + ._ (10)

or defining,
-- _ 1
P = P + gRkk (11)

p

and employing the Smagorinsky eddy viscosity model for closure of the Reynolds' stress, we

have:

rij -_ 2UTSij = UT \ OXj q- OXi ]
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In the original Smagorinsky model the eddy viscosity, b'T, was related to the large scale

strain rate. A suggestion made by Kwak et aI. (1979) and discussed by Mansour (1981) is to

relate the eddy viscosity to the trace of the resolved vorticity field. This is done in the hope

of dealing with turbulent/non-turbulent interfaces more effectively, because the vorticity is

zero in regions of irrotatlonal flow, whereas the strain rate may not be. This model, while

adequate for closure of the first order large scale transport equations, was found insufficient to

achieve closure of the second order SGS species covariance equation. Therefore, the decision

was made to go to a one-equation hydrodynamics closure model, specifically we solved the

:(uiui). The eddy viscosity istransport equation for the SGS turbulent kinetic energy, k = 1 , ,

of the form,

uT ----CkAv/-£ (13)

where Ck is a model constant chosen as 0.01, and A is the filter width chosen so as to enable

comparison to the same physical space as in the DNS calculations. Then our modeled

momentum equation becomes,

O_-i, 0(_) _ 1 OF 0 ( . OW, _ OUT Cg'Wj (14)0-7+ Ox, pox,+ (" + Ox,ox,ox,

The form of the modeled TKE equation is shown below,

Dk 0 ( UT) Ok ) k} (15)Dt - Ox, (u + -_k _xi,I + Pk -- CD-_

where Pk is the production term given by,

(0: o:7,- (:G)
Pk = vr \Ozi + Oxj] Oxi

This term can be rewritten in terms of the large scale strain rate, Sij = i \o_, + o_j],

as Pk = 2VTSOSO. The form of this term arises fl'om extending Bousinesque's relation

for the laminar stress tensor to the turbulent stress tensor. This relation postulates that

the the unknown subgrid stress tensor is proportional to the large scale strain rate, the

proportionality being an eddy viscosity. We found that this traditional modeling resulted in

too small a production of TKE at the mid- and far- field regions of the flow domain. This

will be shown in the results section, but this problem necessitated an unorthodox modeling

approach for the production term in the TKE. Thus, we found out that if we modeled the

production term using the square of the rotation tensor we get a much improved solution

5
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for the TKE over more than two thirds of the flow domain. This model is based on two

observations: (1) the regions of large turbulence kinetic energy are observed to coincide with

regions of strong vorticity, and (2) one can show that the modification of the Smagorinsky

model which is based on the vorticity rather than the large scale strain rate, as proposed

by Mansour et al. to deal with regions of turbulent/ non-turbulent flow, can be shown to

result from a production equals dissipation argument with the production term modeled on

the rotation tensor.

As mentioned the Smagorinsky model is based on the stress being proportional to the rate

of strain as in a laminar flow. Lund et al (1991) points out that for turbulence transport this

relation may need to be augmented. He suggests that rotation should be included in a model

for turbulence transport. He then proposes a subgrid-scale stress model which is based not

only on the strain rate but on the rotation rate and products of the strain and rotation rate

tensors. Recently, Taulbee (1992) developed an improved algebraic Reynolds stress model.

His expression for the Reynolds stress is linear in the rate of strain but contains higher-order

terms involving combinations of the rotation and strain tensors. Taulbee showed that the

improved algebraic model gives better predictions that the previous algebraic Reynolds stress

models for the simple flows he considered.

The turbulence Prandtl number, c_k, is taken as unity and CD is a model constant chosen as

0.5. We shall now consider closure of the thermochemical equations.

3 Thermochemical Formulation

m

We consider a two-species reaction of the type A + B _ Products in an isothermal, incom-

pressible flow.

iS,

The species A mass fraction, YA, conservation equation, with "D constant,

OYA OuWA O:YA
-- + - Z)-- + (17)

Ot Oxi OxiOxi

and a similar equation for species B. Filtering the above equation,

OVA OuWA O:F-AA
(is)

Ot Oxi OxiOxi

Let,

YA = YA -t- _ , ui = u---2+ u', (19)
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then,

where h-7 _AAis computable from the resolved field and,

NY_ + U_YA + u_A'= Z)T_
oG
Oxi (21)

So then,

0G 0< _ 0 ( 0Gx (22)o--V+ ox, - _ (r, + z_r)-GTx,) + _A

Here _)T = VT/SCT where we choose SC T = 1.0.

= ,

w 4 Chemical Source Formulation

w

The chemical source term appearing in the species continuity equation is of the form

COA= --kj YAYB (23)

where k/is the rate constant and is quantified by the DamkShler number, Da, is defined as:

Da- klYA°° (2,1)

where YAoo is the freestream species concentration, AU is the freestream velocity difference

and A is the vorticity thickness. The filtered non-dimensionalized source term is,

w

&----'A= - D a ( YA Ys + Y] Y_ ) (25)

An alternative approach is to replace the spatial average with a probability average, that is,

&--A= -Da f d2A'_AB(¢' , _2")de ! d_.)'t (o6)

where ¢' and _b" are the sample space variables for species A and B. Thus if we knew the form

of the joint PDF of species A and B we would be able to determine the space filtered chemical

source term exactly. Based on our experiences as indicated in the previous section, here we

employ a member of the Pearson family of distributions, namely the Dirichlet distribution,
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for the joint PDF of A and B. We note that this assumption implies a univariate Beta density

for the marginal species distributions.

The Dirichlet or joint Beta distribution for the two species A and B is defined as follows,

PAS(_", _b") = I'(p_ + P2 + P3) (¢,)m_l(_b,,)p2-_(1 _ _b'- %b")p3-' (27)
I'(p,)I'(p2)I'(p3)

where,

¢'_>0, _b">_0, _,'+_b"_<l, pl,p2,p3>0 (2s)

The parameters pl, p2, p3 are determined from the knowledge of any three of the following five

quantities: YA, liB, subgrid scale species A variance, y_2 subgrid scale species B variance,

l ?
y_2, or the covariance of the two species, Y_Y_. The chemical source term should depend on

all of the above turbochemical quantities. We shall discuss this later. If we select the two

species mean values along with the species covariance we can determine the three parameters.

They are coupled through:

p, = -_--Ss (29)

p_= -_s (30)

p3= (YA+ YB- 1)s (31)

where,

s = 1+ _B/Z_Zb (32)

With this assumed form of the joint PDF, one can simply integrate the chemical source term

in order to obtain its large scale component. This results in closed form expression for the

source term,

,-, pip2 (3:3)
_A = --Ua(a + 1)a

where a : pl + P2 + P3. Substituting the definitions from Equations (26-29) into Equation

(30) it can be seen that the source term is consistent with Equation (22). This serves to

highlight the difference between mean chemistry and accounting for the subgrid fluctuations.

The values of YA and YB are computable from their respective transport equations. In order

to ascertain the subgrid species covariance }_Y_ we must solve an additional transport

equation. This equation can be derived in a straighforward manner and its modeling is well
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known in turbulence literature (Pope, 1979):

_-_ - _ (D+DT) Ox, ,] +C, DT Ox, Oxi -C2YjYb -_+&AYb+ws A

where C1 and C2 are adjustable constants.

The chemical source terms in this equation can be likewise modeled using the assumed PDF.

After integration their form becomes,

( (.__ + 1)p,p_ __ PIP2 ) (35)&BY._ _ D a

\(a + 2)(a+ 1),:, (,;7 i)a

( _(p___+ 1)p, p2 P,P2 "_ (36)
_AZb= -Da \ (a + 2)(a+ 1)a - Z, (a+ 1)a]

The TKE and the subgrid scalar covariance are initialized with their respective time zero

filtered DNS quantities for comparison purposes. Thus the hybrid Smagorinsky/PDF subgrid

scale closure is complete.

5 Numerical Formulation and Problem Description

In order to solve the set of Equations (10,19,32), boundary and initial conditions are needed.

In the homogeneous flow case the 2D simulations are performed with a pseudospectral col-

location alogorithm utilizing 2562 collocation points. The simulations are similar to those

described in Madnia et M. (1992) and the reader is refered to this for more details. In

the shear flow configuration free-slip boundary conditions are employed for the cross-stream

direction. A zero-gradient outflow boundary condition on the velocity and species fields is

employed. The concentration fields are initialized with an error function distribution. The

initial conditions for the mean streamwise velocity are by a hyperbolic tangent velocity pro-

file, and the mean cross-stream velocity component is set equal to zero. In order to develop

the vorticity rollup and pairing, which are known features of such flows, a small perturba-

tion in the form of the most unstable mode and its subharmonics, calculated from linear

stability analysis, is added to this mean profile. The presence of the fundamental mode in

the shear layer produces a single vortex rollup, while the superimposed subharmonic pertur-

bation is responsible for the second rollup in the form of the merging of two vortices. These

phenomena have significant effects on the chemical reactions that occur within the layer.
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The assumption of even periodicity of the flow in the 9 direction allows us to use pseu-

dospectral Fourier sine/cosine expansions. However, in the streamwise direction an overall

second-order finite difference scheme is used with a quadratic upwind differencing for the

convection term. This eliminates the spurious oscillations associated with the dispersive

error of the second-order scheme, The pressure is decoupled from the momentum equation

by solving the appropriate Poisson equation. Time advancement is accomplished with the

second-order Adams-Bashforth technique.

The computational domain was selected to be a region bounded by (0 < z < 323) and

(-86 < y < 86) where _ is the vorticity thickness. For the LES runs there are 64 equally

spaced finite difference grid points in the streamwise direction and 32 Fourier modes in the

transverse direction. For DNS comparison runs the resolution is improved to 512 x 256 and

for apriori analysis subsequently filtered to 64 x 32.

A number of non-dimensional parameters characterize the flow. They are the Reynolds

number, Re = AU_/u, based on the initial shear layer thickness, the mean velocity difference

across the layer and the kinematic viscosity, the velocity ratio, R = AU/(U1 + Us), and

the Peclet number, Pe = AU6/D. Moderate values of these parameters must be chosen

due to the computational limitations of the current simulations. It is hoped that with the

development of the SGS model herein and future advancements these artificial limits can

be surpassed. For this preliminary study we choose Re = Pe = 1000 and R = 0.5. The

resolution provided here is sufficient for these simulation parameters.

m

k..

6 A priori Analysis

The Dirichlet distribution is used to model the statistics of the species field within tile

subgrids in LES of homogeneous turbulence. Since the behavior within the subgrid can be

assumed isotropie with a good degree of accuracy (Ferziger, 1981), the use of these models

with their demonstrated capabilities in homogeneous flows is well justified. For the Dirichlet

model in equilibrium chemistry, the first two moments of an appropriately defined Shvab-

Zeldovich variable can be obtained by a properly devised SGS closure (Antonopoulos-Domis,

1981). With the adoption of a Dirichlet density, all the higher order statistics of the reacting

field can then be determined. In these cases, the mixture within the subgrid is usually non-

stoichiometric, even if the initial sample within the subgrid is supplied with equivalence ratio

of unity. In finite rate chemistry the Dirichlet distribution will be assumed for the joint PDF

10
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of the two reacting species.

In order to examine the applicability of the Dirichlet density for subgrid modeling, we have

performed a priori evaluation of the model. These evaluations are similar to those of previous

assessments by Erlebacher et al. (1987). With the construction of the DNS database for a

2D homogeneous flow, the results are used to construct the PDF's of the scalar variables

within the subgrid. In Figure 1 the contours of the subgrid product mass fraction predicted

by the Dirichlet density model are compared with those generated directly via DNS. These

results are taken from an arbitrary plane within the three-dimensional box. The comparisons

shown in these figures reveal a good agreement between the model predictions and the DNS

data. This agreement provides a justification for recommending the Dirichlet density as

a reasonable closure to account for the statistical variations within the subgrid. Due to

a rather small sample size within the subgrid, the comparison of higher order statistical

quantities generated by the model with those of DNS suffers from statistical errors. Also,

the implementation of the model requires accurate input of the first two moments of the

Shvab-Zeldovich variable.

It has been shown previously that the Dirichlet PDF performs well in RANS modeling of

non-homogenous flows in the limits of frozen and equilibrium chemistry (Frankel et al., 1992).

With this assumed form we can obtain analytical relations for all the moments of the two

species (Madnia et al., 1992). We first consider the case for Da = 0. To make comparison

with DNS results, the Dirichlet PDF is parameterized by the species mean values and the

covariance. With this choice, in Figure 2 we display the a priori predictions and the DNS

computations. Here we can see that the assumed PDF does very well in predicting the

statistical behavior of the scalar values. For finite rate chemistry, consider Figure 3 for

_/t v t2
Da = 5. Specifically, we consider the third order moments YA'2]_ and I AIB , which are

needed in the solution to the covariance transport equation. Figure 4 shows the third order

moments at the same DamkShler number for the case where the PDF is parameterized by

the two means and the sum of the variances. This choice of parameters has been utilized

by Narayan and Girimaji (1992), and requires solution of a transport equation for the sum

of the variances, or the so called scalar energy. The differences in the statistical predictions

between this choice and the selection of the covariance is not sufficient to warrant one choice

over the other. Since the covariance appears naturally in the filtered source term we chosc

to use that version in this work.

For our non-homogeneous shear flow we compare predictions obtained by employing the

11



Dirichlet distribution for equilibrium chemistrywith the filtered DNS results. In Figure 5 we

showthe resultsfor the instantaneousproduct thicknessasa function of streamwisedistance.

The plots confirms that the Dirichlet distribution doesa reasonablejob of predicting the

subgrid statistics in the limit of fast chemistry. The issueof the modelsvalidity for the case

of finite-rate chemistry is taken up in the following section.

7 Reacting Shear Flows

W

w

_=_-

In this section a number of simulation results are presented in order to make comparisons

and assess the validity of the proposed SGS closure. We begin with a nonreacting flow case

in order to ascertain whether our hydrodynamic subgrid model and our modeled species

covariance transport equation are performing satisfactorily. This will consist of comparisons

between two sets of simulations, LES conducted on a 64x32 grid and a DNS conducted

on a 512x256 grid, subsequently filtered to a 64x32 grid. Next, we will consider reacting

flows in which the performance of our hybrid Smagorinsky/PDF closure will be assessed.

In order to see the effect of the PDF closure we shall also compare to results obtained

using the Smagorinsky closure while neglecting the effect of subgrid scale fluctuations on

the chemistry. These will be denoted as using the mean closure. Contour plots, transverse

profiles and integral thickness plots of various flow-field related quantities will aid us in our

model assessments.

In order to assess whether the one-equation Smagorinsky model is performing adequately

we present LES results for a nonreacting case. The filter width was chosen so as to contain

the same physical space as the DNS results in order to make an accurate comparison. In

Figure 6 we show transverse profiles of the streamwise velocity component at five downstream

locations at a particular time during the simulation. The large scale velocity field is predicted

well in the LES results. For flow visualization purposes contour plots of species A are shown

in Figure 7. The effect of the subgrid scale model is to smear out the small scale features of

the species field within the large scale coherent structures as evidenced in the plot.

In Figure 8 we show contour plots of the subgrid scale TKE obtained from the (a) solution of

the modeled transport equation and the (b) filtered DNS results. The reasonable agreement

can be more clearly seen in Figure 9, which shows transverse profiles at select downstream

locations. Good agreement is obtained at four out of the five downstream locations. At the

last downstream location the TKE equation severly underpredicts the turbulence level. This

12



r

i i

may be due to deficiencies in modeling the Reynolds stress in terms of the rotation tensor

alone. Inclusion of other terms such as the strain rate and/or products of the strain and

rotation tensors may be necessary to improve the TKE predictions. This will be discussed

further in the next section.

Figure 10 shows contour plots of the subgrid scale species covariance obtained from the

modeled transport equation and the filtered DNS for the non-reacting flow case. This plot

serves to highlight the deficiences with the modeling of the scalar flux via gradient transport.

For the reacting flow cases considered here the Damk6hler number is selected as Da = 10.

This value is fixed for all the simulations. In Figure 11, contour plots of the product species

from the LES and DNS are presented. From these figures we can see the LES and DNS

results show similar large scale structures. Figure 12 shows product thickness distribution

from the filtered DNS and the LES results obtained with and without the PDF closure. Here

we can see that inclusion of the subgrid fluctuations gives results that predict the correct

trend are closer to those of the filtered DNS. We note that the mean chemistry results show

a gross overprediction of the extent of reaction when compared to the filtered DNS results.

This highlights the importance of accounting for the subgrid species fluctuations in such

flOWS.

Figure 13 depicts contour plots of the results for the subgrid species covariance obtained

from the filtered DNS as well as the modeled transport equation. This demonstrates the

problem of accurately predicting the covariance. Figure 14 shows this in a more quantita-

tive manner by displaying the average unmixedness versus streamwise distance. This poor

agreement is in part due to the third order moments which are closed using the assumed

Dirichlet distribution. As demonstrated in the a priori analysis section this distribution has

difficulties with predicting the higher order moments well. The discrepancies in the covari-

ance solution are also observed in the non-reactlng case as well, indicating that there may be

other problems with this modeled equation. These solutions were not able to be improved

by simply adjusting the model constants. One of the major problems we feel is that the

modeling of the scalar flux in terms of the large scale scalar gradient is inadequate in the

context of an LES. That is, the scalar flux may depend on other terms such as the strain alld

rotation tensors. This can be deduced by developing an algebraic model for the scalar flux

in much the same way as has been done for the Reynolds stress. This issue will be further

discussed in the next section.
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8 Conclusions and Extensions

In this work, a priori and a posteriori of both homogeneous and non-homogeneous reacting

flows are conducted in order to assess the validity of assumed PDF models as potential

subgrid scale closures for LES of reacting flows. Specifically, a priori these studies revealed

that if a Dirichlet distribution is assumed for the joint PDF of the two species, then for

frozen and very fast chemistry chemistry the model performs reasonably well in predicting

the statistical behavior of the scalar fields. For non-equilibrium chemistry, the PDF closure

is not capable of modeling higher order moments accurately.

LES of reacting shear flow has also been conducted employing a hybrid one-equation Smagorin-

sky/PDF model for the statistical variations on the subgrid. Solutions for the subgrid turbu-

lent kinetic energy and the species covariance have been obtained via solutions of modeled

transport equations. The Dirichlet distribution has been employed to close the chemical

source terms appearing in the thermochemical equations. The results demonstrate the effect

of accounting for the subgrid scale species fluctuations on the product distribution within

the shear layer. While the trends are encouraging they do highlight a number of areas where

further work is required to improve the model.

First, a better model for the subgrid Reynolds stress is required to obtain more accurate

predictions for the subgrid turbulence energy levels. This might involve accounting for some

of the additional interactions between the strain and rotation tensors as discussed by Lund

et al. and Taulbee. Along the same lines, modeling of the scalar flux via gradient transport

in the context of a time-accurate LES calculation appears unable to give accurate solu-

tions for second-order subgrid turbulence quantities, such as the species covariance. This

modeling deficiency will manifest itself in any potential subgrid chemistry model requiring

such statistical information. Algebraic scalar flux models along the lines of Taulbee's alge-

braic Reynolds stress model would perhaps reveal some of the important terms, other than

the scalar gradient, which would better describe the scalar-turbulence interactions. Theses

would probably involve the strain and rotation tensors, as well as the scalar gradient, in

some appropriate form. Finally, the discrepancies between the assumed form for the joint

PDF of species and the actual subgrid PDF will lead to errors, as seen, when predicting the

higher-order moments which are needed to close the equations for the second-order subgrid

statistics. One possible approach would be instead of assuming the form of the subgrid PDF

to solve the appropriate PDF evolution equation for the species. At this stage this has not

been looked at and here again some of the previous modeling assumptions may have to be

14



revised in the context of an LES. For more complex multi-species chemistry the Dirichlet

distribution generalizes to n random variables very nicely while still providing analytic forms

for all the joint statistics.

".._

9 References

Antonopoulos-Domis, A., Large Eddy Simulations of a Passive Scalar in Isotropic Turbu-

lence, J. Fluid Mech., 104, 55-79, (1981).

Baurle, R. A., Alexopoulos, G. A., Hassan, H. A., and Drummond, J. P., An Assumed

Joint-Beta PDF Approach for Supersonic Turbulent Combustion, AIAA Paper No. 92-3844,

(1992).

Bockhorn, H., The Effect of Multi-Dimensional PDFs on the Turbulent Reaction Rate in Tur-

bulent Reacting Flows at Moderate DamkShler Numbers, PhysicoChemical Hydrodynamics,

9, (3/4), 525-535, (1987).

Cain, A. B., Reynolds, W. C., and Ferziger, J. H., A Three-Dimensional Simulation of

Transition and Early Turbulence in a Time-Developing Mixing Layer, Report No. TF-14,

Thermosciences Division, Dept. of Mech. Eng., Stanford Univ., Stanford, Cal., August

(1981).

Erlebacher, G., Hussaini, M. Y., Speziale, C. G., and Zang, T. A., Toward the Large Eddy

Simulations of Compressible Turbulent Flows, NASA CR 178273, ICASE Report 87-20,

NASA Langley Research Center, Hampton, VA. (1987).

Ferziger, J. H., Higher Level Simulations of Turbulent Flows, chapter in Computation_d

Methods for Turbulent, Transonic, and Viscous Flows, Hemisphere Publishing Corporation,

(1983).

Frankel, S. H., Hassan, H. A., and Drummond, J. P., A Hybrid Reynolds Averaged/PDF

Closure Model for Supersonic Turbulent Combustion, AIAA Paper No. 90-1573, (1990).

Frankel, S. H., Madnia, C. K., and Givi, P., Modeling of the Unmixedness in Homogeneous

Reacting Turbulence, Chem. Eng. Comm., 104, 117-125, (1991).

Frankel, S. H., Madnia, C. K., and Givi, P., Modeling of the Reactant Conversion Rate in a

Turbulent Shear Flow, Chem. Eng. Comm., 113, 197-209, (1992).

15



=

w

Gaffney, R. L., White, J. A., Girimaji, S. S., and Drummond, J. P., Modeling Turbu-

lent/Chemistry Interactions Using Assumed PDF Methods, AIAA Paper No. 92-3638,

(1992).

Girimaji, S. S., Assumed Beta PDF Model for Turbulent Mixing: Validation and Extension

to Multiple Scalar Mixing, Combust. Sci. and Tech., 78, 177-196, (1991).

Givi, P., Model Free Simulations of Turbulent Reactive Flows, Prog. Energy Comb. Science,

15, No. 1, 1 (1989).

Horuiti, K., Large Eddy Simulation of Turbulent Channel Flow by One-Equation Modeling,

J. Phys. Soc. Jpn., 54(S), 2855-2865, (1985).

Launder, B. E., and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Aca-

demic Press, (1972).

Lesieur, M., Staquet, C., Le Roy, P., and Comte, P., The Mixing Layer and its Coherence

Examined from the Point of View of Two-Dimensional Turbulence, J. Fluid Mech., Vol. 192,

511-534, (1988).

Libby, P. A., and Williams, F. A. (Eds.), Turbulent Reacting Flows, Springer, (1980).

Lilly, D. K., The Representation of Small-Scale Turbulence in Numerical Simulation Exper-

iments, Proc. of the IBM Sci. Comp. Symposium on Env. Sci., IBM-Form No. 320-1951,

195-210, (1967).

Lockwood, F. C., and Naguib, A. S., The Prediction of the Fluctuations in the Properties

of Free, Round-Jet, Turbulent Diffusion Flames, Combust. and Flame, 24, 109-124, (1975).

Lund, T. S., and Novikov, E. A., Parameterization of Subgrid-Scale Stress by the Velocity

Gradient Tensor, Center for Turbulence Research Annual Research Briefs, (1991).

Madnia, C. K., Frankel, S. H., and Givi, P., Direct Numerical Simulations of the Unmixedness

in a Homogeneous Reacting Turbulent Flow, Chem. Eng. Comm., 109, 19-29, (1991a).

Madnia, C. K., and Givi, P., On DNS and LES of Homogeneous Reacting Turbulence, in

Galperin, B. and Orszag, S. A., editors, Large Eddy Simulations of Complez Engineering

and Geophysical Flows, Cambridge University Press, Cambridge, U.K. in press (1992).

Madnia, C. K., Frankel, S. H., and Girl, P., Reactant Conversion in Homogeneous Tur-

bulence: Mathematical Modeling, Computational Validations and Practical Applications,

Theoret. Comput. Fluid Dynamics, (1992).

16



w

7

=

r

2

Mansour, N. H., Ferziger, J. H., and Reynolds, W. C., Large Eddy Simulation of a Turbulent

Mixing Layer, NASA Technical Report Number TF-11, April, (1978).

Maruyama, Y., A Numerical Simulation of a Plane Turbulent Shear Layer, Trans. Japan

Soc. Aero. Space Sci., Vol. 31, No. 92, 79-93, (1988).

Narayan, J. R., and Girimaji, S. S., Turbulent Reacting Flow Computations Including

Turbulent-Chemistry Interactions, AIAA Paper No. 92-0342, (1992).

Pope, S. B., The Statistical Theory of Turbulent Flames, Phil. Trans. R. Soc. Lond., A291,

529, (1979).

Pope, S. B., PDF Methods for Turbulent Reacting Flows, Prog. Energy Combust. Sci., 11,

119-192, (1985).

Pope, S. B., Computations of Turbulent Combustion: Progress and Challenges, in Proceed-

ings of 23rd Syrnp. (Int) on Combustion, 591-612, The Combustion Institute, Pittsburgh,

PA, (1990).

Ragab, S. A., and Sheen, S., Large Eddy Simulation of a Mixing Layer, AIAA Paper No.

91-0233, (1991).

Ragab, S. A., Sheen, S., and Sreedhar, M., An Investigation of Finite-Difference Methods

for Large Eddy Simulation of a Mixing Layer, AIAA Paper No. 92-0554, (1992).

Rogallo, R. S., and Moin, P., Numerical Simulation of Turbulent Flows, Ann. Rev. Fluid

Mech., 16, 99-137, (1984).

Schumann, U., Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in

Plane Channels and Annuli, J. Comput. Phys., 18, 376-404, (1975).

Schumann, U., Large Eddy Simulation of Turbulent Diffusion with Chemical Reactions in

the Convective Boundary Layer, Atmos. Env., 23, (8), 1713-1727, (1989).

Smagorinsky, J., General Circulation Experiments with the Primitive Equations, I. The Basic

Experiment, Monthly Weather Review, Vol. 91, 99-164, (1963).

Taulbee, D. B., An Improved Algebraic Reynolds Stress Model and corresponding Nonlinear

Stress Model, Phys. Fluids A, 4, (11), 2555, (1992).

w

17



Figure Captions

r -

w

w

w

w

Figure

Figure

Figure

1. Contour plots of filtered product concentration.

2. Statistical moments vs. time for Da = 0 case.

3. Third order moments for the Da = 5 case parameterized by means and covariance.

Figure 4. Third order moments for the Da = 5 case parameterized by means and scalar

energy.

Figure 5. Product thickness for equilbrium chemistry.

Figure 6. Transverse profiles of streamwise velocity at four downstream locations (a) 55, (b)

106, (c) 155, (d) 205.

Figure 7. Contour plots of species A for Da = 0 case (a) LES, (b) DNS.

Figure 8. Contour plots of subgrid scale turbulent kinetic energy (a) LES, (b) DNS.

Figure 9. Transverse profiles of subgrid scale turbulent kinetic energy at four downstream

locations (a) 55, (b) 105, (c) 155, (d) 205, (e) 256.

Figure 10. Contour plots of subgrid scale species covariance for non-reacting case (a) LES,

(b) DNS.

Figure 11. Contour plots of product species for Da = 10 case (a) LES, (b) DNS.

Figure 12. Product thickness for Da = 10 case.

Figure 13. Contour plots of subgrid scale species covariance for Da = 10 case (a) LES, (b)

DNS.

Figure 14. Covariance thickness for Da = 10 case.
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5 Appendix III

This appendix provides a report, albeit incomplete, in validating the use of PF generated

family of PDF's in Reynolds averaging procedures. We realize that this report is incomplete

and we apologize for that. However, we feel it is necessary to include this summary to show

our current status in this particular aspect of our work. We are presently analyzing our

results, and we hope to have this report completed in the near future.

L This appendix has been prepared by Mr. George Sabini, an undergraduate Research Aid,

who is a new-comer to our group and is assisting us in this project.
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Modeling of Turbo-Chemical Fluctuations

in a Reacting Scalar Mixing Layer

by

G. J. Sabini, S. H. Frankel, C. K. Madnia and P. Givi

Abstract

Single-point Probability Density Function (PDF) methods have proven very useful for

modeling of turbo-fluctuations in statistical descriptions of turbulent reacting flows. In

this work, results are presented of statistical predictions of an incompressible, turbulent,

parallel mixing layer under the influence of a non-premixed, isothermal chemical reaction

of the type A + B _ Products. The self-similar region of the reacting layer is consid-

ered. This flow configuration has been the subject of numerous previous investigations,

and abundant experimental data are available providing the basis for appraising the per-

formance of turbulence closures. The effects of hydrodynamics on scalar transport are

modeled by means of conventional turbulent closures, and the influences of scalar-scalar

fluctuations are taken into account by assumed PDF methods. Based on earlier find-

ings, several members of the Pearson Family of PDF's are considered: namely, a Dirichlct

density for non-equilibrium chemistry flow, and a Beta density of the first kind for the

flow under chemical equilibrium. The predicted results are compared with those obtained

based on a joint Gaussian PDF, which has been employed in most previous analyt, ical

investigations. All the analytic results are also compared with the experimental data of

Saetran et al (1989) and of a reacting flow and Bilger et al (1991) of a reacting flow under

similar fluid mechanical-chemical conditions. The outcome of this comparative study in-

dicates that the Pearson family of PDF's are indeed superior for predicting the influence

of turbulence on the reactant conversion rate. In particular, it is shown that the Dirichlet

distribution if parameterized with the scalar energy, provides the most reasonable means of

modeling the joint PDF of the scalar. The extent of agreement improves as the magnitude

of the Damk6hler number is increased. This is demonstrated by detailed comparisons of

predicted results with laboratory data.
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Scalar Mixing Layer, Turbulent Reacting Flows, Dirichlet Distribution, Probability Density
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Introduction:

In our previous works (Madnia et al., 1991a, Frankel et al., 1992) we have demonstrated

that the Beta density provides a very good means of approximating the probability distri-

bution of a conserved scalar quantity in both homogeneous and nonhomogeneous turbulent

flows. Closed form analytic expressions have been obtained for the statistics of the passive

scalar field, and with the assumption of fast chemistry, for the reactive scalar field as well.

These relations are valid for any value of the stoichiometric coefficient.

In this work we intend to investigate the validity of our model in predicting the statistical

behavior of the passive and reactive scalar fields in a homogeneous mixing layer, often

referred to as a thermal or scalar mixing layer. Results obtained with our model will be

compared to the experimental data of Saetran et M. (1991). In order to obtain the passive

scalar statistics we shall follow the eddy viscosity approach detailed by Libby (1975) to

solve the passive scalar mean and variance transport equations in this simple flow. With

the specification of the first two moments of the conserved scalar our model is capable of

predicting the equilibrium statistics of the reacting scalar field.

We will then extend this work to treat nonequilibrium, that is, finite rate, chemically

reacting flowfields. This will be done by assuming a Dirichlet distribution for the joint

PDF of the reacting scalars. For the second order reaction under consideration here,

this PDF is also known as the joint Beta PDF. The specification of this PDF requircs

the knowledge of first moments of both of the reactants and turbulent scalar energy Q

(which is the sum of the scalar variances), or the reactant means and covariance. The

information with regard to these statistics is determined from the solution of modeled

transport equations. One of the pleasing features of the choice of the Dirichlet PDF is

that it results in simple closed form expressions for both the chemical source term and the

chemical source/sink terms appearing in the mean and scalar energy transport equation.

As before all results of the investigation obtained with the PDF model will be compared

to the experimental data of Saetran et al. (1991), as well as to the solution of the same

transport equations using a Joint Gaussian PDF, which has been employed in previous

calculations.
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A scalar mixing layer is formed when traditional grid generated turbulence is augmented

with a scalar gradient. This can be in the form of either temperature, obtained as a result of

heating half the grid (Libby, 1975) or by including two different species (Bilger, 1991). This

simple flow confguration, because of its convenience, is of interest to study in order to gain

insights and test modeling assumptions for more complex flows, such as nonhomogeneous

shear layers. Experiments have been conducted by a number of researchers in order to

study the statistical behavior of the passive scalar (Libby, 1975; LaRue and Libby, 1981;

LaRue et al., 1981, Gibson eta/., 1989). Reacting scalar measurements were obtained

by Saetran et al. (1989) and recently discussed by Bilger et al. (1991). Theoretical

and modeling contributions originated with Libby (1975), Newman et al. (1981) and

Elghobashi and Launder (1983), and concentrated on traditional moment methods for

closure. These numerous investigations have been concerned with predicting the behavior

of the scalar mean and intensity. Particular difficulties have been noted in predicting the

peak intensities for the passive and reacting scalars (Saetran et al., 1989). When dealing

with reacting flowfields the added difficulties encountered by the nonlinear chemical source

terms make PDF methods the method of choice in such situations (Pope, 1985,1991; Givi,

1989).

Libby (1975) discusses the diffusion of temperature in the downstream region of a partially

heated grid. In order to predict the passive scalar statistics in the mixing layer he utilizes

the eddy viscosity assumption to obtain an analytic solution for the conserved scalar mean

and to close the transport equation for the conserved scalar variance. With the grid flow

assumptions of a homogeneous velocity field, temporally invariant statistics, high Reynolds

number, and boundary layer assumptions he comes up with an ordinary differential equa-

tion for the passive scalar variance. This equation has the two usual constants in front

of the turbulent fluctuation and dissipation terms which are normally chosen to provide

a best match to experimental results (Spalding, 1972). This linear equation is discretized

using central differences and the resulting linear system of equations is solved using a

tridiagonal solver.

With the provision of the conserved scalar mean and variance, knowledge of the conserved

scalar PDF would allow us to predict the limiting values for the reacting scalar statistics.

Frankel et al. (1992) (see also Madnia et al., 1992) used a Beta density and obtained closed

3



form, analytic expression for the maximum rate of reactant conversion in a nonhomoge-

neous shear layer. The model predictions compared favorably with those obtained from

DNS. The derivations of the analytic expression for the statistics of the reacting scalar are

rather involved (see Frankel, 1992). Here, we only present the final results for the second

moment of the reacting scalar,

m

_ L--)2 fs (a + _3) + (o_ +/3)(a +/9 + 1)

r-1

<B 2 >=
f[-2(1-L)_ [L(_+¢{+2)-(_+I)]

B(a,/3) (4 +/3)(o_ +/3 + 1)

ZL(a, t3) [f_ 2afs a(a+l) ]+ f,2 (a -4-/3) + (a +/5')(_ +/3 + 1)

Here, B(a,/3) is the Beta function, and a and/3 are related to the first two moments of

the random field (Frankel et al., 1991). ZL (o_,,/3) is the Incomplete Beta Function, and f,

denotes the stoichiometric value of the Shvab- Zeldovich variable, f. For unity normalized

concentrations at the free streams, L = 0.5. Thus, with these formulas for reacting scalar

mean and variance we can compare our fast chemistry predictions with the experimental

data of Saetran et al. (1989). This will follow in the next section.

In order to treat the nonequilibrium chemistry we employ an assumed Dirichlet distribution

for the joint PDF of the reacting scalars. This results in analytic closed form expressions

the chemical source and source/sink terms in the mean and scalar energy equation. The

form of the Dirichlet distribution is

PAB(9' _")= F(Pl + P2 + P3)
' F(pl)F(p2)F(p3) (Rg')Pt-I(_")P=-I(1 -- _'-- _,,)v3-1

where _I" _> 0, _I'" _> 0, _I" + tI," _< 1 and pl,p2,p3 > 0. The parameters pl, p2, p3 can

be determined from any three of the following quantities: <A>, <B>, <A'2>, <B'2>,

<A'B'>, and <A'2> + <B'2>. Here we select the scalar means and the sum of the scalar

4



variances, or the reacting scalar energy, Q, and we also perform a second closure using the

reactant means and covariance.

The Joint Gaussian distribution used for comparison is expressed as

v") =
1 [ _@/-<A>)2 2 (qrt--<A>)(@"--<B>)--(qnl"--<A>)2]

_ 2(1__p ) <A,2> -- ,,0 _/<Al2> <Bt2> -I- <A/12>

27rx/< A '2 >< B 2 >V/1 -p2

where p is the correlation coefficient, defined as <A_B_>/<B_2><A'2>.

Presentation of Results:

w

2

m

m

m

m

L-
m

w

Computations of the conserved scalar mean and variance were performed with tile con-

stants in front of the turbulent fluctuation and dissipation terms as 0.89 and 5.72, respec-

tively. The production constant is the same as suggested by LaRue et al. (1981) but

the dissipation level had to be increased from their value of 2.25. This is because the

peak intensity in the experiment of Saetran et al. (1989) is about 30% less than the peak

intensity of LaRue et al.. Figures 1 and 2 show the the conserved scalar mean and stan-

dard deviation plotted against the similarity variable r], normalized by the mixing layer

thickness 5. 5 is the distance between the points where the mean is 0.1 and 0.9 (Saetran

et al., 1989). Excellent agreement with the experimental data is observed. With the first

two moments all higher order moments of the conserved scalar are available from simple

analytic expressions (Statistics, 19xx). In figures 3 and 4 the skewness and kurtosis versus

transverse distance are shown for both the model and the experimental data. While the

general trends are encouraging, note that local minima and maxima are not captured.

The participating chemical species used to obtain the reacting scalar data are nitric oxide

and ozone. Two cases were examined by Saetran et a1., a low and a high DamkShler number

case. The experimental results for the high Damkghler number case were deemed close to

the fast chemistry equilibrium limit and are chosen for comparison in this study. Thus,

using the values of the conserved scalar mean and variance, as discussed, we can now assess

our model predictions for the reacting scalar statistics. Figure 5 shows the mean reactant

concentrations normalized by their inlet values. Also shown is the Beta density solution

obtained from our closed form expressions for reactant conversion. The agreement is quite

good. In figure 6 we show the standard deviations of the reactant concentrations versus

transverse distance. Here again we note the excellent agreement with experimental data
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in both the peak intensity level and the overall distribution. Another important quantity

in modeling of turbulent reacting flows is the unmixedness or normalized concentration

covariance. With the Beta density a closed form expression for the unmixedness has been

obtained (Madnia et al., 1991; Frankel et a/., 1992). Figure 7 shows a comparison of the

unmixedness between our predictions and the experimental data with encouraging result.

Obviously the reason for the good agreement between our model predictions and the ex-

perimental data is the necessary agreement between our assumed Beta PDF and the ex-

perimentally measured PDFs. Bilger et M. (1991) provides further experimental data,

specifically the conserved and reacting scalar PDPs. These are presented in figure 8. The

agreement between the measured PDFs and the Beta PDF provides the rationale for our

previously discussed statistical concordance. Due to the excellent agreement and attractive

simplicity of our closed form expressions for the entire statistical behavior of the scalar

mixing layer field, and previous agreements in both homogeneous and non-homogeneous

environments, we heartily recommend usage of these formulas for predictions of the limiting

bounds of the reactant conversion under warranted conditions.

Of greater interest is the prediction of species concentration for finite rates of reactant

conversion. With the assumed Dirichlet distribution, analytic expressions for the statistics

of the scalar field allow closure of the chemical source terms in the mean and scalar energy

transport equations. The three parameters of the Dirichlet distribution are pl =<A >a,

p2 =<B>a, and pa-= (1- <A> - <B>)a, where a depends on whether the third

specified quantity is the species covariance or the scalar energy. With the scalar energy as

the specified quantity,

<A> (1- <A>)+ <B> (1- <B>)
a---- -1

<A'2> + <t?'2>

and specifying the covariance,

< ArB I >
i"a + 1)-t< A >< B >

In a scalar mixing layer with homogenous turbulence and the assumptions of stationary

flow, self similarity, and high Reynolds number, the transport equation of Q is

d 2 Q rI dQ . d<A> )2 +2(--d<B> )2 - + 2X(C AA'+ = 0



where rI is the similarity transformation variable, X is the downstream location normalized

by the turbulence grid mesh size, and a and 3' are the constants in front of the turbulent

fluctuation and dissipation terms. The analogous equation for the species covariance is

d2<A'B'> rl d<A'B'> d<A> d<B>
a + +2-

drl 2 2 dq dq dq
-- 3"<A'B'> + X(d;AA' + wBB') = 0

=

=

w

w

n

The derivatives were approximated with second order central finite differences at fifty

gridpoints between the boundaries of 77= 4 and r/= -4. The statistical closures in terms

of the scalar means and energy result in a system of coupled non-linear equations which

were solved with a Newton-Rapson scheme with a convergence criterion of 1 x 10 -2.

For purposes of comparison, in addition to the Dirichlet and the Joint Gaussian modcls,

also used is a mean-chemistry model, in which fluctuations are ignored in the chemical

source terms of the transport equations The solutions of all the closure models for the

mean reactant concentrations versus the normalized similarity variable, are shoven in

figures 9 and 10, for the the low and high DamkShler number cases, respectively. In order

to make a better evaluation of the merits of each model than is possible with the mean

concentration profiles, presented in figures 11 and 12 (for the same respective case) are

the mean product profiles. The Dirichlet model parameterized with scalar energy provides

the most accurate measure of peak product generation, while the mean chemistry model

overpredicts the reactant conversion (especially in the center of the mixing layer, where

the reaction occurs most vigorously).

Figures 13 and 14 show the total scalar energy of the high and low Damk6hler number

eases for all models. The Dirichlet model parameterized with scalar energy captures the

reduction of scalar energy in the center of the mixing layer (where the bulk of the reaction

occurs), whereas the other models do not. The negative of the unmixedness (in this case

equal to the covariance, because the intial reactant concentrations are normalized to unity)

are shown for Da=0.3 and Da=l.81, respectively, in figures 15 and 16.

Bilger (1991) provides experimental data of the skewness and kurtosis of mixture fraction

for a variety of DamkShler numbers. For all the cases presented, it appears that these

moments are invariant with DamkShler number. Figures 17 and 18 present the skewness,

and 18 and 19 the kurtosis, of the two cases of finite rate chemistry (again, Da=0.3 and

w



i

m

Da=l.81). In both mixture fraction moments, the higher Damk/;hl(_r numl_cu" ca s_: 1,ctt,u

reproduces the experimental data.

Again the reason for the favorable results of our model is the agreement between our

assumed PDFs and the measured PDFs. Bilger provides experimental data of t,he joint

PDPs of the concentrations of the two reactants. Joint PDFs of the species concentrations

according to the Dirichlet model are presented in figures 21 and 22.

Figures 23 and 24 show the contribution to the scalar energy transport equation of the

dissipation, production and chemical terms for the two cases of Damk6hler number. In a

recent paper, Baurle et al. (1992) use an assumed Dirichlet distribution for concentration in

supersonic turbulent combustion. They find that the chemical source acts as a sink which

effectively reduces the total scalar energy, and is not consistent with the experimental dotal.

We can draw the same conclusion from our results. For the high DamkShler number,

the chemical term is a greater sink than the low Damkghler case, almost matching the

dissipation term at its peak. Hence the better match in peak intensities of total scalar

energy for the low DamkShler number case.

As a result of the encouraging agreement for predictions of finite rates of reactant con-

version in the scalar mixing layer and of mixture fraction moments with using the scalar

energy-parameterized Dirichlet distribution, we extend our recommendation, in the ab-

sence of better alternatives, to this model.
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